Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art
Abstract
:1. Introduction
2. Historical Perspective and Development of the CPV Technology
3. Characterization of the CPV Technologies
3.1. Efficiency
3.2. Tracking System
3.3. Durability
4. Up-To-Date Solutions for CPV
5. LCA of CPV Modules
5.1. LCA of HCPV Modules
5.2. LCA of LCPV Modules
6. End of Life and Recycling
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Reyes-Belmonte, M.A. Quo Vadis Solar Energy Research? Appl. Sci. 2021, 11, 3015. [Google Scholar] [CrossRef]
- Pablo-Romero, M.D.P.; Román, R.; Sánchez-Braza, A.; Yñiguez, R. Renewable Energy, Emissions, and Health. In Renewable Energy—Utilisation and System Integration; Cao, W., Hu, Y., Eds.; IntechOpen: London, UK, 2016; pp. 173–198. [Google Scholar]
- Akella, A.K.; Saini, R.P.; Sharma, M.P. Social, economical and environmental impacts of renewable energy systems. Renew. Energy 2009, 34, 390–396. [Google Scholar] [CrossRef]
- Chukwuka, C.; Folly, K.A. Overview of Concentrated Photovoltaic (CPV) Cells. J. Power Energy Eng. 2014, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Boretti, A.; Castelletto, S.; Al-Zubaidy, S. Concentrating solar power tower technology: Present status and outlook. Nonlinear Eng. 2019, 8, 10–31. [Google Scholar] [CrossRef]
- Benhammane, M.; Notton, G.; Pichenot, G.; Voarino, P.; Ouvrard, D. Overview of electrical power models for concentrated photovoltaic systems and development of a new operational model with easily accessible inputs. Renew. Sustain. Energy Rev. 2021, 135, 110221. [Google Scholar] [CrossRef]
- Wiesenfarth, M.; Anton, I.; Bett, A.W. Challenges in the design of concentrator photovoltaic (CPV) modules to achieve highest efficiencies. Appl. Phys. Rev. 2018, 5, 041601. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.; Xu, C.; Liao, Z.; Du, X.; Wei, G.; Wang, Z.; Yang, Y. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR). Sci. Bull. 2017, 62, 1388–1426. [Google Scholar] [CrossRef] [Green Version]
- Piasecka, I.; Bałdowska-Witos, P.; Piotrowska, K.; Tomporowski, A. Eco-Energetical Life Cycle Assessment of Materials and Components of Photovoltaic Power Plant. Energies 2020, 13, 1385. [Google Scholar] [CrossRef] [Green Version]
- International Renewable Energy Agency—End-of-Life Management Solar Photovoltaic Panels, 2016. Available online: https://www.irena.org/publications/2016/Jun/End-of-life-management-Solar-Photovoltaic-Panels (accessed on 10 February 2021).
- Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M.L. Review on life cycle assessment of solar photovoltaic panels. Energies 2020, 13, 252. [Google Scholar] [CrossRef] [Green Version]
- Beccali, M.; Cellura, M.; Finocchiaro, P.; Guarino, F.; Longo, S.; Nocke, B. Life Cycle Assessment performance comparison of small solar thermal cooling systems with conventional plants assisted with photovoltaics. Energy Procedia 2012, 30, 893–903. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO 14040. Environmental Management—Life Cycle Assessment —Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. ISO 14044. Environmental Management—Life Cycle Assessment —Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Brusseau, M.L. Sustainable Development and Other Solutions to Pollution and Global Change. Environ. Pollut. Sci. 2019, 585–603. [Google Scholar]
- Nieuwlaar, E. Life Cycle Assessment and Energy Systems. In Encyclopedia of Energy, 1st ed.; Cleveland, C.J., Ed.; Elsevier: Wisconsin, OH, USA, 2004; pp. 647–654. [Google Scholar]
- Gerbinet, S.; Belboom, S.; Léonard, A. Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2014, 38, 747–753. [Google Scholar] [CrossRef]
- Fraunhofer ISE. Study: Levelized Cost of Electricity—Renewable Energy Technologies; Fraunhofer ISE: Freiburg, Germany, 2013. [Google Scholar]
- Khamooshi, M.; Salati, H.; Egelioglu, F.; Hooshyar Faghiri, A.; Tarabishi, J.; Babadi, S. A review of solar photovoltaic concentrators. Int. J. Photoenergy 2014, 958521. [Google Scholar] [CrossRef]
- Ralph, E.L. Use of concentrated sunlight with solar cells for terrestrial applications. Sol. Energy 1966, 10, 67–71. [Google Scholar] [CrossRef]
- Friedman, D.J. Concentrating and multijunction photovoltaics. In Fundamentals of Materials for Energy and Environmental Sustainability; Ginley, D.S., Kahen, D., Eds.; Cambridge University Press: New York, NY, USA, 2012; pp. 257–271. [Google Scholar]
- Salim, A.A.; Huraib, F.S.; Eugenio, F.S.; Lepley, T.C. Performance comparison of two similar concentrating PV systems operating in the US and Saudi Arabia. In Proceedings of the 19th IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 4–8 May 1987; pp. 1351–1357. [Google Scholar]
- Fthenakis, V.M.; Kim, H.C. Life cycle assessment of high-concentration photovoltaic systems. Prog. Photovoltaics Res. Appl. 2013, 21, 379–388. [Google Scholar] [CrossRef]
- Wiesenfarth, M.; Steiner, M.; Dörsam, T.; Siefer, G.; Dimroth, F.; Nitz, P.; Bett, A.W. FLATCON® CPV module technology: A new design based on the evaluation of 10 years of outdoor measurement data. AIP Conf. Proc. 2019, 2149. [Google Scholar]
- Victoria-Pérez, M. New concepts and techniques for the development of high-efficiency concentrating photovoltaic modules. Ph.D. Thesis, Aarhus University, Aarhus, Denmark, 2014. [Google Scholar]
- Khatri, R.; Agarwal, S.; Saha, I.; Singh, S.K.; Kumar, B. Study on long term reliability of photo-voltaic modules and analysis of power degradation using accelerated aging tests and electroluminescence technique. Energy Procedia 2011, 8, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Wohlgemuth, J.H.; Cunningham, D.W.; Monus, P.; Miller, J.; Nguyen, A. Long term reliability of photovoltaic modules. In Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; pp. 2050–2053. [Google Scholar]
- Xiao, M.; Tang, L.; Zhang, X.; Lun, I.Y.F.; Yuan, Y. A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems. Energies 2018, 11, 3416. [Google Scholar] [CrossRef] [Green Version]
- Price, J.S.; Grede, A.J.; Wang, B.; Lipski, M.V.; Fisher, B.; Lee, K.-T.; He, J.; Brulo, G.S.; Ma, X.; Burroughs, S.; et al. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency. Nat. Energy 2017, 2, 1–7. [Google Scholar] [CrossRef]
- Saito, K.; Abiko, Y.; Toya, K.; Mori, K.; Kogetsu, Y.; Iwasaki, T. Development of concentrator photovoltaic system. SEI Tech. Rev. 2013, 76, 23–26. [Google Scholar]
- King, R.R.; Law, D.C.; Edmondson, K.M.; Fetzer, C.M.; Kinsey, G.S.; Yoon, H.; Sherif, R.A.; Karam, N.H. 40% efficient metamorphic GaInPGaInAsGe multijunction solar cells. Appl. Phys. Lett. 2007, 90, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Dimroth, F.; Grave, M.; Beutel, P.; Fiedeler, U.; Karcher, C.; Tibbits, T.N.D.; Oliva, E.; Siefer, G.; Schachtner, M.; Wekkeli, A.; et al. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovoltaics Res. Appl. 2014, 22, 277–282. [Google Scholar] [CrossRef]
- Law, D.C.; King, R.R.; Yoon, H.; Archer, M.J.; Boca, A.; Fetzer, C.M.; Mesropian, S.; Isshiki, T.; Haddad, M.; Edmondson, K.M.; et al. Future technology pathways of terrestrial III-V multijunction solar cells for concentrator photovoltaic systems. Sol. Energy Mater. Sol. Cells 2010, 94, 1314–1318. [Google Scholar] [CrossRef]
- Domínguez, C.; Jost, N.; Askins, S.; Victoria, M.; Antón, I. A review of the promises and challenges of micro-concentrator photovoltaics. AIP Conf. Proc. 2017, 1881, 080003. [Google Scholar]
- Steiner, M.; Bösch, A.; Dilger, A.; Dimroth, F.; Dörsam, T.; Muller, M.; Hornung, T.; Siefer, G.; Wiesenfarth, M.; Bett, A.W. FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells. Prog. Photovoltaics Res. Appl. 2015, 23, 1323–1329. [Google Scholar]
- Philipps, S.P.; Bett, A.W.; Horowitz, K.; Kurtz, S. Current Status of Concentrator Photovoltaic (CPV) Technology ; Technical Report of National Renewable Energy Lab; National Renewable Energy Lab (NREL): Golden, CO, USA, 2015. [CrossRef]
- Fernández, E.F.; Almonacid, F.; Rodrigo, P.M.; Pérez-Higueras, P.J. CPV systems. In McEvoy’s Handbook of Photovoltaics, 3rd ed.; Kalogirou, S., Ed.; Academic Press: London, UK, 2018; pp. 931–985. [Google Scholar]
- Lee, C.Y.; Chou, P.C.; Chiang, C.M.; Lin, C.F. Sun tracking systems: A review. Sensors 2009, 9, 3875–3890. [Google Scholar] [CrossRef] [PubMed]
- AL-Rousan, N.; Isa, N.A.M.; Desa, M.K.M. Advances in solar photovoltaic tracking systems: A review. Renew. Sustain. Energy Rev. 2018, 82, 2548–2569. [Google Scholar] [CrossRef]
- Ferdaus, R.A.; Mohammed, M.A.; Rahman, S.; Salehin, S.; Mannan, M.A. Energy Efficient Hybrid Dual Axis Solar Tracking System. J. Renew. Energy 2014, 2014, 629717. [Google Scholar] [CrossRef]
- Ignacio Luque-Heredia, I.; Magalhães, P.; Muller, M. CPV Tracking and Trackers. In Handbook of Concentrator Photovoltaic Technology, 1st ed.; Algora, C., Rey-Stolle, I., Eds.; John Wiley&Sons Inc.: Chichester, UK, 2016; pp. 293–338. [Google Scholar]
- Damiano, A.; Marongiu, I.; Musio, C.; Musio, M. Concentrator photovoltaic standards: Experimental analyses of technical requirements. In Proceedings of the IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–14 November 2013; pp. 8074–8079. [Google Scholar]
- Lin, G.J.; Bi, J.; Song, M.; Liu, J.; Xiong, W.; Huang, M. III-V Multi-Junction Solar Cells. In Optoelectronics—Advanced Materials and Devices; Pyshkin, S.L., Ballato, J.M., Eds.; IntechOpen: London, UK, 2013; pp. 445–471. [Google Scholar]
- Miller, D.C.; Gedvilas, L.M.; To, B.; Kennedy, C.E.; Kurtz, S.R. Durability of poly(methyl methacrylate) lenses used in concentrating photovoltaic modules. Reliab. Photovolt. Cells, Modul. Components Syst. III 2010, 7773, 777303. [Google Scholar]
- Hayashi, N.; Terauchi, M.; Aya, Y.; Kanayama, S.; Nishitani, H.; Nakagawa, T.; Takase, M. Thin concentrator photovoltaic module with micro-solar cells which are mounted by self-align method using surface tension of melted solder. AIP Conf. Proc. 2017, 1881, 080005. [Google Scholar]
- Hayashi, N.; Matsushita, A.; Inoue, D.; Matsumoto, M.; Nagata, T.; Higuchi, H.; Aya, Y.; Nakagawa, T. Nonuniformity sunlight-irradiation effect on photovoltaic performance of concentrating photovoltaic using microsolar cells without secondary optics. IEEE J. Photovoltaics 2016, 6, 350–357. [Google Scholar] [CrossRef]
- Ghosal, K.; Lilly, D.; Gabriel, J.; Whitehead, M.; Seel, S.; Fisher, B.; Wilson, J.; Burroughs, S. Semprius field results and progress in system development. IEEE J. Photovoltaics 2014, 4, 703–708. [Google Scholar] [CrossRef]
- Abad, D.; San Miguel, G.; Domínguez, C.; Jost, N.; Guti, F. Environmental and Economic LCI of a micro-CPV module. In Proceedings of the 16th International Conference on Environmental Science and Technology, Rhodes, Greece, 4–7 September 2019; pp. 3–4. [Google Scholar]
- Krarti, M. Integrated Design of Communities. In Optimal Design and Retrofit of Energy Efficient Buildings, Communities, and Urban Centers; Krarti, M. Butterworth-Heinemann: Oxford, UK, 2018; pp. 385–470. [Google Scholar]
- Yoon, J.; Lee, S.M.; Kang, D.; Meitl, M.A.; Bower, C.A.; Rogers, J.A. Heterogeneously Integrated Optoelectronic Devices Enabled by Micro-Transfer Printing. Adv. Opt. Mater. 2015, 3, 1313–1335. [Google Scholar] [CrossRef]
- Tien, N.X.; Shin, S. A novel concentrator photovoltaic (CPV) system with the improvement of irradiance uniformity and the capturing of diffuse solar radiation. Appl. Sci. 2016, 6, 251. [Google Scholar] [CrossRef] [Green Version]
- Yamada, N.; Hirai, D. Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture. Prog. Photovoltaics Res. Appl. 2016, 24, 846–854. [Google Scholar] [CrossRef]
- Chemisana, D. Building integrated concentrating photovoltaics: A review. Renew. Sustain. Energy Rev. 2011, 15, 603–611. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues. Renew. Sustain. Energy Rev. 2017, 78, 916–932. [Google Scholar] [CrossRef] [Green Version]
- Fthenakis, V. Life Cycle Analysis of CPV Systems. In Handbook of Concentrator Photovoltaic Technology, 1st ed.; Algora, C., Rey-Stolle, I., Eds.; John Wiley&Sons Inc: Chichester, UK, 2016; pp. 685–704. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- U.S. Life Cycle Inventory Database. National Renewable Energy Laboratory. 2012. Available online: https://www.lcacommons.gov/nrel/search (accessed on 11 February 2021).
- Palanov, N. Life-Cycle Assessment of Photovaltaic Systems. Master’s Thesis, Lund University (LTH), Lund, Sweden, 2014. [Google Scholar]
- Peharz, G.; Dimroth, F. Energy payback time of the high-concentration PV system FLATCON®. Prog. Photovoltaics Res. Appl. 2005, 13, 627–634. [Google Scholar] [CrossRef]
- Frischknecht, R.; Heath, G.; Raugei, M.; Sinha, P.; de Wild-Scholten, M.; Fthenakis, V.; Kim, H.C. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity, 3rd ed.; International Energy Agency (IEA): France, Paris, 2016. [Google Scholar]
- Lamnatou, C.; Baig, H.; Chemisana, D.; Mallick, T.K. Life cycle energy analysis and embodied carbon of a linear dielectric-based concentrating photovoltaic appropriate for building-integrated applications. Energy Build. 2015, 107, 366–375. [Google Scholar] [CrossRef]
- Menoufi, K.; Chemisana, D.; Rosell, J.I. Life cycle assessment of a building added concentrating photovoltaic system (BACPV). Energy Procedia 2017, 128, 194–201. [Google Scholar] [CrossRef]
- Wiesenfarth, W.; Philipps, S.P.; Bett, A.W. Current Status of Concentrator Photovoltaic (CPV) Technology Version 1.3; Fraunhofer Institute for Solar Energy Systems ISE: Freiburg, Germany, 2017. [Google Scholar]
- Minassians, A.D.; Farshchi, R.; Nelson, J.; Weiser, C.R.; Zhang, T. Energy Payback Time of a SolFocus Gen1 Concentrator PV System; Final Project Report (MSE-ER C226—Photovoltaic Materials); University of California: Berkeley, CA, USA, 2006. [Google Scholar]
- Halasah, S.A.; Pearlmutter, D.; Feuermann, D. Field installation versus local integration of photovoltaic systems and their effect on energy evaluation metrics. Energy Policy 2013, 52, 462–471. [Google Scholar] [CrossRef]
- Peng, J.; Lu, L.; Yang, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew. Sustain. Energy Rev. 2013, 19, 255–274. [Google Scholar] [CrossRef]
- Sandwell, P.; Duggan, G.; Nelson, J.; Ekins-Daukes, N. The environmental impact of lightweight HCPV modules: Efficient design and effective deployment. Prog. Photovoltaics Res. Appl. 2016, 24, 1458–1472. [Google Scholar] [CrossRef]
- Sandwell, P.R.; Nelson, J.; Ekins-daukes, N. Assessing the potential for photovoltaic technology to mitigate greenhouse gas emissions. Ph.D. Thesis, Department of Physics Imperial College, London, UK, 2017. [Google Scholar]
- European Commission. Multi-APprOach for High Efficiency Integrated and InteLLigent cONcentrating PV Modules (Systems) Final Report Summary—APOLLON; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Fthenakis, V.M.; Kim, H.C. Photovoltaics: Life-cycle analyses. Sol. Energy 2011, 85, 1609–1628. [Google Scholar] [CrossRef]
- Nishimura, A.; Hayashi, Y.; Tanaka, K.; Hirota, M.; Kato, S.; Ito, M.; Araki, K.; Hu, E.J. Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system. Appl. Energy 2010, 87, 2797–2807. [Google Scholar] [CrossRef]
- Corona, B.; Escudero, L.; Quéméré, G.; Luque-Heredia, I.; San Miguel, G. Energy and environmental life cycle assessment of a high concentration photovoltaic power plant in Morocco. Int. J. Life Cycle Assess. 2017, 22, 364–373. [Google Scholar] [CrossRef]
- Payet, J.; Greffe, T. Life Cycle Assessment of New High Concentration Photovoltaic (HCPV) Modules and Multi-Junction Cells. Energies 2019, 12, 2916. [Google Scholar] [CrossRef] [Green Version]
- HIPERION Project Website. Available online: https://hiperion-project.eu (accessed on 8 March 2021).
- Zieminska-Stolarska, A.; Zbicinski, I. Report 2, Life cycle and energy payback time analysis, 2020, HIPERION Project Grant No. 857775—confidential.
- Cellura, M.; Grippaldi, V.; Lobrano, V.; Longo, S.; Mistretta, M.; Cellura, M.; Grippaldi, V.; Brano, V.; Longo, S.; Mistretta, M. Life cycle assessment of a solar PV/T concentrator system. In Proceedings of the Life Cycle Management Conference LCM, Berlin, Germany, 28–31 August 2011. [Google Scholar]
- De Feo, G.; Forni, M.; Petito, F.; Renno, C. Life cycle assessment and economic analysis of a low concentrating photovoltaic system. Environ. Technol. 2016, 37, 2473–2482. [Google Scholar] [CrossRef]
- Li, G.; Xuan, Q.; Pei, G.; Su, Y.; Lu, Y.; Ji, J. Life-cycle assessment of a low-concentration PV module for building south wall integration in China. Appl. Energy 2018, 215, 174–185. [Google Scholar] [CrossRef]
- Hu, A.H.; Huang, L.H.; Lou, S.; Kuo, C.H.; Huang, C.Y.; Chian, K.J.; Chien, H.T.; Hong, H.F. Assessment of the carbon footprint, social benefit of carbon reduction, and energy payback time of a high-concentration photovoltaic system. Sustainability 2017, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Schuetz, M.A.; Shell, K.A.; Brown, S.A.; Reinbolt, G.S.; French, R.H.; Davis, R.J. Design and construction of a ∼7× low-concentration photovoltaic system based on compound parabolic concentrators. IEEE J. Photovoltaics 2012, 2, 382–386. [Google Scholar] [CrossRef]
- Famoso, F.; Lanzafame, R.; Maenza, S.; Scandura, P.F. Performance comparison between low concentration photovoltaic and fixed angle PV systems. Energy Procedia 2015, 81, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Brocato, M.; Calabrese, G.; Guidi, V.; Mondardini, L.; Pozzetti, L.; Tonezzer, M.; Vincenzi, D. Building integrated low concentration solar system for a self-sustainable Mediterranean villa: The Astonyshine house. Energy Build. 2014, 77, 355–363. [Google Scholar] [CrossRef]
- Deng, R.; Chang, N.L.; Ouyang, Z.; Chong, C.M. A techno-economic review of silicon photovoltaic module recycling. Renew. Sustain. Energy Rev. 2019, 109, 532–550. [Google Scholar] [CrossRef]
- Komoto, K.; Lee, J.S. End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies; Technical reports; IEA: Paris, France, 2018. [Google Scholar] [CrossRef]
- Nain, P.; Kumar, A. Metal dissolution from end-of-life solar photovoltaics in real landfill leachate versus synthetic solutions: One-year study. Waste Manag. 2020, 114, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Fthenakis, V.M. End-of-life management and recycling of PV modules. Energy Policy 2000, 28, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Yoo, S.; Lee, J.; Boo, B.; Ryu, H. Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew. Energy 2012, 47, 152–159. [Google Scholar] [CrossRef]
- D’Adamo, I.; Miliacca, M.; Rosa, P. Economic Feasibility for Recycling of Waste Crystalline Silicon Photovoltaic Modules. Int. J. Photoenergy 2017, 2017, 4184676. [Google Scholar] [CrossRef]
- Latunussa, C.; Mancini, L.; Blengini, G.; Ardente, F.; Pennington, D. Analysis of Material Recovery from Silicon Photovoltaic Panels; EU-European Commission: Brussels, Belgium, 2016. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Tan, Q.; Peters, A.L.; Yang, C. Global status of recycling waste solar panels: A review. Waste Manag. 2018, 75, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Strachala, D.; Hylský, J.; Vanĕk, J.; Fafilek, G.; Jandová, K. Methods for recycling photovoltaic modules and their impact on environment and raw material extraction. Acta Montan. Slovaca 2017, 22, 257–269. [Google Scholar]
- Lunardi, M.M.; Alvarez-Gaitan, J.P.; Bilbao, J.I.; Corkish, R. A Review of Recycling Processes for Photovoltaic Modules. In Solar Panels and Photovoltaic Materials; Zaidi, B., Ed.; IntechOpen: London, UK, 2018; pp. 9–27. [Google Scholar]
Single-Axis Trackers | Two-Axis Trackers | ||
---|---|---|---|
Characterization | Tracking the sun by rotation in one axis Advantage: simple construction and lower costs Disadvantage: impossible to set collector’s aperture perpendicularly to the sunlight all the time—collection of solar energy is insufficient to maintain the maximum | Tracking with two rotational axes, which angles CPV modules perpendicularly to the sun rays Advantage: flexibility, higher energy output Disadvantage: mechanical complexity | |
Options | Horizontal axis—parallel to the ground; oriented along East–West or North–South direction | Two-axis tracker for point-focus CPV dish (a) | |
Vertical axis—collinear with the Zenith | Two-axis tracker for point-focus CPV module: —Pedestal-mounted tracker (b) —Carousel (rotate-and-roll) tracker (c) —Tilt-and-roll tracker (d) | ||
Inclined axis—inclined to the ground; oriented along North–South direction | |||
Component | Life Cycle Span (Years) |
---|---|
Two-axis tracker | 30 |
HCPV module | 30 |
Cables | 30 |
Manufacturing plant | 30 |
Inverter | 15 |
Transformer | 10 |
Parameter | Definition | Reference |
---|---|---|
FU | Functional Unit—A quantified measure of the system performance; generally, 1 kilowatt-hour (kWh) of produced electricity from converted solar irradiation (defined in stage 1 of LCA) | [59] |
EPBT | Energy Payback Time—A period required for a renewable energy system to generate the same amount of energy that was used to produce the system itself | [60] |
GHG | Green House Gas emission during the life cycle stages of a PV system is estimated as an equivalent of CO2 using an integrated 100-year time horizon using the most recent global warming potential factors published by the IPCC | [61] |
GPBT | Greenhouse Payback Time—A measure of the years needed, e.g., for a PV system to balance the emissions of greenhouse gases | [62] |
CED | Cumulative Energy Demand describes the consumption of fossil, nuclear and renewable energy sources along the life cycle of a product or a service | [60,61] |
PR | Performance Ratio percentage of real converted solar energy from theoretically possible under standard testing conditions | [59] |
EROI | Energy Return on the Investment—Calculated as system lifetime to EPBT ratio; it shows how easy (in energy terms) it is to exploit the available primary energy sources by investing a given amount of energy which one already has at own disposal | [62] |
ERF | Energy Return Factor—Calculated as a sum of total primary energy output produced during the entire lifetime of the system to the CED ratio | [63] |
Technology | Location | Solar Cell | CR | Dimension/ Aperture Area | Module Efficiency [%] | CO2 Footprint GHG Emissions [g CO2-eq./kWh] | EPBT | Other Information | Year | Source |
---|---|---|---|---|---|---|---|---|---|---|
HCPV | ||||||||||
FLATCON | Spain | III-V MJSC | >500× | 25.6 (28.8) m2 | 26.0 | 18.0 | 8–16 months | -CED 5.8 MJ/Wp -DNI 2093 kWh/m2 | 2005 | [60,68] |
SolFocusGen1 | Berkeley (B), California Phoenix (P), Arizona | III-V MJSC | 500× | na | 25.0 | na | 1.5 years (C) 1.3 years (A) | -CED 12.9 MJ/Wp -Energy return factor (ERF) 33.2 | 2006 | [65,66,67,68,69] |
Apollon | Italy | III-V MJSC | 500–750× | na | 34.0 | 20.0 | 12 months | -CED 8.3 MJ/Wp -DNI 1794 2093 kWh/m2 | 2008 | [68,70] |
Amonix | Las Vegas (LV) Phoenix (P) Glendale (G) | III-V MJSC | 500× | 267 m2 | 37.0 | 26.0 (LV) 27.0 (P,G) | 0.9 years (~11 months) | -DNI 2600 kWh/m2 (LV) 2480 kWh/m2 (P), 2570 kWh/m2 (G) -system life time—30 years -CED 11.8 MJ/Wp | 2009 | [24,56,71] |
Sharp | Gobi Desert (G) Toyohashi (T) | III-V MJSC | 90.7% | 10.9 m2 | 18.8 (G) 18.0 (T) | na | 2 years (G) 2.64 years (T) | -comparison of HCPV technology with ms-Si PV based on LCA results | 2010 | [72] |
7.5 kW CPV by INER | Taoyuan, Japan | III-V MJSC | 476× | 34.56 m2 | 30.0 | 107.69 | 2.61 years | -grid transmission loss 3.74% -system lifetime—30 years -DNI 909 kWh/m2 | 2016 | [77] |
Fullsun HCPV module | Phoenix (P), USA Seville(S), Spain Tabuk (T), Saudi Arabia Haixi (H), China Alice Springs (AS), Australia Calama (C), Chile | III-V MJSC | 625× | 450 × 600 × 48 mm/0.27 m2 | 34.0 | 9.0 (P) 9.4 (S) 8.3 (T) 9.8 (H) 8.8 (AS) 6.5 (C) | 0.30 year (P) 0.32 year (S) 0.28 year (T) 0.33 year (H) 0.29 year (AS) 0.22 year (C) | -system lifetime—30 years -CED 4.3 MJ/Wp- DNI 2482 (P), 2278 (S), 2668 (T), 2409 (H), 2668 (AS), 3322 (C) kWh/m2/yr -CPBT 0.48 (P), 0.88 (S), 0.30 (T), 0.35 (H), 0.29 (AS), 0.40 (C) -LCOE—the lowest $0.037/kWh (C), the highest $0.055/kWh (S) | 2016 | [68] |
1.008 MWp HCPV plant | Casablanca, Marocco | III-V MJSC | 820× | 3600 m2 | 28.2 | 53.7 | 1.457 year | -system lifetime—20 years -human toxicity 44.1 kg 1.4-DB eq/MWh -marine ecotoxicity 1.20 g 1.4-DB eq/kWh -overall CED 18.83 × 106 MJ -DNI 1834 kWh/Wp | 2016 | [73] |
CPVMatch | Catania, Italy | III-V FJSC | >800× (M) >320× (F,A) | 0.986 m2 (M) 0.320 m2 (F,A) | 36.7% (M) 41.4% (A) | 16.4 (M) 18.4 (A) | 0.74–0.98 year | -comparison of different concentrating technology of HCPV: mirror (M), Fresnel lens (F) and Achromalens (A) | 2019 | [74] |
Hiperion | Madrid, Lyon | III-V MJSC | na | na | 29.0 | 11–15 | na | DNI 2207 kWh/m2 | 2020 | [75,76] |
LCPV | ||||||||||
Building Integrated BIPV | Exeter (E) Barcelona (B) Madrid (M) Dublin (D) Paris (P) | Mono-crystalline Si solar cell | 2.8× | 1160 × 740 × 185 mm/0.036 m2 | 11.8 | 93–101 (MB) | 2–4 years (B,M) | -GPBT 27.2–33.1 years (P) 3.3–5.7 years (E,D,B,M) -comparison of two configurations: with reflective film and without | 2015 | [62] |
Building added BACPV | Spain | Single crystalline Si | 10× | 48 × 36 mm—CPV cell (52 cells in module) | na | na | 1 year | -comparison of two conventional BIPV -ERF 32 | 2017 | [63] |
Low Concentrating Photovoltaic-Thermal (CPVT) | Palermo, Italy | Crystalline Si | - | 10 m2 | na | na | 0.7 year | -LCPV installed on the roof -solar thermal collectors | 2011 | [77] |
LCPV 2× | Italy | Poly-crystalline Si | 2× | 0.156 × 0.156 m2 PV area (60 cells in module) | na | 54.0 | na | -comparison with traditional PV -economic analysis -ReCiPe | 2016 | [78] |
aCPC-PV | China | 1.74× | 100 × 100 mm2 | na | na | 2.82–4.74 years | -environmental indicators are calculated for five cities in China: Beijing, Hefei, Lhasa, Lanzhou, Harbin -CED 12.2 MJ/Wp -GWP 1.09 kg CO2-ef./Wp -possible application in BICPV | 2018 | [79] |
Component | Material | Approximate Content | Recovery |
---|---|---|---|
Frame | aluminum | 18% | aluminum scrap suitable for producing secondary aluminum |
Cables | tinned wire | 2% | copper recovery from cable scrap (~97%) |
polymer (e.g., PVC) | recovery of energy from incineration of polymer (~2.86 MJ/kg) | ||
Top surface | glass | 70% | glass cullet for glass production (consumption 25% less energy compared to normal glass manufacture) |
Encapsulation layer | EVA, adhesive layer | 5% | Energy recovery from incineration process (~3.5 MJ/kg of electricity) |
Back-sheet layer | Polyvinyl fluoride | 1.5% | Energy recovery from incineration process |
Solar cell | Silicon | 4% | recovery rate of silicon ~95% and may substitute silicon metal |
Metallization of modules | silver | 0.05% | recovered through electrolysis or precipitation in leaching solution |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemińska-Stolarska, A.; Pietrzak, M.; Zbiciński, I. Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art. Energies 2021, 14, 3143. https://doi.org/10.3390/en14113143
Ziemińska-Stolarska A, Pietrzak M, Zbiciński I. Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art. Energies. 2021; 14(11):3143. https://doi.org/10.3390/en14113143
Chicago/Turabian StyleZiemińska-Stolarska, Aleksandra, Monika Pietrzak, and Ireneusz Zbiciński. 2021. "Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art" Energies 14, no. 11: 3143. https://doi.org/10.3390/en14113143
APA StyleZiemińska-Stolarska, A., Pietrzak, M., & Zbiciński, I. (2021). Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art. Energies, 14(11), 3143. https://doi.org/10.3390/en14113143