Economic and Social Aspects of Using Energy from PV and Solar Installations in Farmers’ Households in the Podkarpackie Region
Abstract
:1. Introduction
2. Factors Determining the Adoption of PV and Solar Installations in the Agriculture
- (1)
- The first aspect that studies often refer to is the reasons why households make the decision to invest in generating energy through PV and solar panel technologies [3]. Labay et al. draw attention to demographic factors in their research [26]. Sidiras and Koukios point to a number of economic, socio-cultural, and political factors [27]. Faiers and Neame show the low importance of environmental features in relation to, inter alia, economic factors [28]. Bollinger et al. indicate, on the other hand, that the appearance of PV and solar installations is increasing among households that already have such installations [29]. On the other hand, Zhai and Williams point out that despite the importance of reducing costs in the case of decisions related to the installation of PV panels, with the passage of time, users appreciated the aspect of environmental protection more and more [30]. As the main factor determining the choice of renewable energy investments, Fleiß et al. indicate the economic factor. It is the main determinant of the choice of investments in renewable energy among many others. Factors such as energy autonomy, the belief in environmental protection, or the prestige of having renewable energy investments are still less important than the profitability of investments. [31]. Therefore, the visible trends that determine the choice of this type of installation are still economic factors. Hence, proposals call for a more active policy of disseminating this type of investment and raising awareness of the importance of other factors as equally important [32,33]. The dominance of PV panels among this type of investment is also visible, despite the growing number of other types. PV and solar installations still dominate [34]. The importance of various institutional factors has also been explored in this context. It has been confirmed that RES support policies are important in the rapid diffusion of solar PV and solar thermal technologies. Such policies include in particular provisions for guaranteed tariffs for energy produced in household installations and financial support through grants, subsidies, low-interest loans, and credits. Wustenhagen emphasizes the importance of public policy in promoting renewable energy [35]. Guidolin and Mortarino also emphasize the importance of supporting energy policy [36]. Research by Kwan [37] and Cherrington confirms that without proper support from regulations and subsidies, it will not be possible to efficiently and increasingly popularly invest in RES-type solutions [38]. Jenner et al. emphasize that this policy should be effective and adjusted to the specific needs of potential recipients [39]. In turn, Bauner emphasizes that despite many incentives from the state policy, there is still much room for improvement. The conclusions that he formulates are therefore convergent with the previously cited results speaking of a better and more effective regulatory system [40].
- (2)
- The second aspect that studies often refer to is the features of the households and decision-makers that made solar PV and solar thermal investments [37]. Chodkowska-Miszczuk emphasizes socio-demographic features such as the age of the farm manager, which is one of the most important in this respect. [41]. The socio-demographic characteristics of farms were also the main subject of research by the team led by Brudermann [42]. Similarly, Ba-kundukize et al. have conducted research for Rwanda [43]. In turn, for Indian households, similar studies were carried out by Irfan et al. [44]. In most of the studies cited, the age of the farm manager was found to be of great importance; the approaches taken by local authorities and the qualifications and level of education of farmers were also found to be important factors. In this respect, the attitudes of rural residents towards RES technologies and the possibilities of changing these attitudes towards greater acceptance and implementation have also been studied [45,46,47].
- -
- Reducing a minimum of 40% of greenhouse gas emissions (compared to 1990 levels);
- -
- Increasing the share of energy from renewable sources in the total energy consumption to a minimum of 32%;
- -
- -
- Growing demand for electricity on agricultural holdings;
- -
- Reduction in energy consumption from conventional sources, for example as a result of an increase in the price of such energy;
- -
- Reduction in agricultural production costs and in the farmer’s family costs associated with the consumption of electricity and heat;
- -
- Increased energy self-reliance and reduced dependence on energy prices;
- -
- Obtaining financial benefits, i.e., grants for the implementation of investments, agricultural tax, and personal income tax reliefs for investment.
3. Materials and Methods
4. Results of Empirical Studies
4.1. PV and Solar Installations at Farmers’ Households in the Podkarpackie Region
- (1)
- Low importance of farm income in the disposable income structure of many farming families, which particularly applies to small farms that dominate in the studied region (the average area of farmland in 2020 here was only 4.9 ha, compared to the national average of 11 ha) [87];
- (2)
- Underestimation by some farmers of the potential benefits of green energy for agricultural production.
4.2. Statistical Analysis
5. Summary and Conclusions Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akella, A.K.; Saini, R.P.; Sharma, M.P. Social, economical and environmental impacts of renewable energy systems. Renew. Energy 2009, 34, 390–396. [Google Scholar] [CrossRef]
- Piwowar, A.; Dzikuć, M. Development of renewable energy sources in the context of threats resulting from low-altitude emissions in rural areas in Poland: A review. Energies 2019, 12, 3558. [Google Scholar] [CrossRef] [Green Version]
- Klepacka, A.M.; Florkowski, W.J.; Menga, T. Clean, accessible, and cost-saving: Reasons for rural household investment in solar panels in Poland. Resour. Conserv. Recycl. 2018, 139, 338–350. [Google Scholar] [CrossRef]
- Briguglioa, M.; Formosaa, G. When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights. Energy Policy 2017, 108, 154–162. [Google Scholar] [CrossRef]
- Kaya, O.; Klepacka, A.M.; Florkowski, J.W. Achieving renewable energy, climate, and air quality policy goals: Rural residential investment in solar panel. J. Environ. Manag. 2019, 248, 109309. [Google Scholar] [CrossRef]
- Choi, C.S.; Siregar, I.Z.; Ravi, S. Reframing the Competition for Land between Food and Energy Production in Indonesia. In Land Cover and Land Use Change on Islands, Social & Ecological Threats to Sustainability; Walsh, S.J., Riveros-Iregui, D., Arce-Nazario, J., Page, P.H., Eds.; Springer International Publishing: New York, NY, USA, 2020; pp. 241–260. [Google Scholar]
- Gradziuk, P.; Gradziuk, B. Renewable Energy Sources as a Development Opportunity for Peripheral Areas. Econ. Reg. Stud. 2020, 13, 184–198. [Google Scholar] [CrossRef]
- Council of the European Union; European Parliament. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2018, L 328, 82–209. [Google Scholar]
- Ustawa z dnia 20 lutego 2015 r. o odnawialnych źródłach energii. Dz. U. 2015 poz. 478 (Z późniejszymi zmianami).
- Wiśniewski, G.; Michałowska-Knap, K.; Oniszk-Popławska, A.; Więcka, A.; Dziamski, P.; Kamińska, M.; Curkowski, A. Określenie Potencjału Energetycznego Regionów Polski w Zakresie Odnawialnych Źródeł Energii—Wnioski dla Regionalnych Programów Operacyjnych na Okres Programowania 2014–2020; Ministerstwo Rozwoju Regionalnego: Warszawa, Polska, 2011. [Google Scholar]
- Fu, R.; Feldman, D.; Margolis, R.; Woodhouse, M.; Ardani, K.U.S. Solar Photovoltaic System Cost Benchmark, Q1 2017; National Renewable Energy Laboratory: Golden, CO, USA, 2017. [Google Scholar]
- Gradziuk, P.; Gradziuk, B.; Us, A. Tendencje kształtowania się kosztów inwestycyjnych w sektorze fotowoltaicznym. Roczniki 2018, 2018, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Rynek Fotowoltaiki w Polsce; Instytut Energetyki Odnawialnej: Warszawa, Polska, 2019.
- Ciechomska, A. Wymiar wsparcia wykorzystania odnawialnych źródeł energii w ramach RPO Województwa Mazowieckiego w perspektywie 2007–2013. Rocz. Nauk. Stowarzyszenia Ekon. Rol. Agrobiz. 2018, 2018, 29–34. [Google Scholar]
- Gradziuk, P.; Gradziuk, B. Próba oceny absorpcji środków z funduszy europejskich na rozwój wykorzystania odnawialnych źródeł energii w woj. lubelskim. Rocz. Nauk. Ekon. Rol. Rozw. Obsz. Wiej. 2017, 104, 95–105. [Google Scholar]
- Kossowski, T. Regionalne programy operacyjne jako czynnik stymulujący wykorzystanie odnawialnych źródeł energii. Roczniki 2016, 2016, 86–92. [Google Scholar]
- Wazed, S.M.; Hughes, B.R.; O’Connor, D.; Kaiser, J.; Calautit, J. Solar Driven Irrigation Systems for Remote Rural Farms. Energy Procedia 2017, 142, 184–191. [Google Scholar] [CrossRef]
- Schmitter, P.; Kibret, K.S.; Lefore, N.; Barron, J. Suitability mapping framework for solar photovoltaic pumps for smallholder farmers in sub-Saharan Africa. Appl. Geogr. 2018, 94, 41–57. [Google Scholar] [CrossRef]
- Fieducik, J.; Godlewski, J. Ekonomiczne i środowiskowe aspekty skoncentrowanej fotowoltaiki. Prz. Elektrotechniczny 2015, 9, 24–26. [Google Scholar] [CrossRef]
- Standar, A.; Kozera, A.; Satoła, Ł. The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland. Energies 2021, 14, 450. [Google Scholar] [CrossRef]
- Chodkowska-Miszczuk, J. Odnawialne źródła energii i ich wykorzystanie jako nowe trendy na obszarach wiejskich w Polsce. Studia Obsz. Wiej. 2014, 35, 227–241. [Google Scholar]
- Malinowski, M.; Leon, J.I.; Abu-Rub, H. Solar Photovoltaic and Thermal Energy Systems: Current Technology and Future Trends. Proc. IEEE 2017, 105, 2132–2146. [Google Scholar] [CrossRef]
- Niechaj, M. Effective use of photovoltaic systems in polish conditions. J. Ecol. Eng. 2016, 17, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Halamska, M. Specyfika rolnictwa rodzinnego w Polsce: Ciężar przeszłości i obecne uwarunkowania. Wieś Rol. 2015, 166, 107–129. [Google Scholar]
- Kryszak, Ł. Selected problems of agricultural income accounts. Rocz. Nauk. Stowarzyszenia Ekon. Rol. Agrobiz. 2017, XIX, 168–173. [Google Scholar] [CrossRef]
- Labay, D.G.; Kinnear, T.C. Exploring the consumer decision process in the adoption of solar energy systems. J. Consum. Res. 1981, 8, 271–278. [Google Scholar] [CrossRef]
- Sidiras, D.K.; Koukios, E.G. Solar system diffusion in local markets. Energy Policy 2004, 32, 2007–2018. [Google Scholar] [CrossRef]
- Faiers, A.; Neame, C. Consumer attitudes towards domestic solar power systems. Energy Policy 2006, 34, 1797–1806. [Google Scholar] [CrossRef] [Green Version]
- Bollinger, B.; Gillingham, K. Peer effects in the diffusion of solar photovoltaic panels. Mark. Sci. 2012, 31, 900–912. [Google Scholar] [CrossRef] [Green Version]
- Zhai, P.; Williams, E.D. Analyzing consumer acceptance of photovoltaics (PV) using fuzzy logic model. Renew. Energy 2012, 41, 350–357. [Google Scholar] [CrossRef]
- Fleiß, E.; Hatzl, S.; Seebauer, S.; Posch, A. Money, not morale: The impact of desires and beliefs on private investment in photovoltaic citizen participation initiatives. J. Clean. Prod. 2017, 141, 920–927. [Google Scholar] [CrossRef]
- Alipour, M.; Salim, H.; Stewart, R.A.; Sahin, O. Residential solar photovoltaic adoption behaviour: End-to-end review of theories, methods and approaches. Renew. Energy 2021, 170, 471–486. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. Snapshot of Photovoltaics—February 2020. Energies 2020, 13, 930. [Google Scholar] [CrossRef] [Green Version]
- Jäger-Waldau, A. The Untapped Area Potential for Photovoltaic Power in the European Union. Clean Technol. 2020, 2, 440–446. [Google Scholar] [CrossRef]
- Wustenhagen, R.; Bilharz, M. Green energy market development in Germany effective public policy and emerging customer demand. Energy Policy 2006, 34, 1681–1696. [Google Scholar] [CrossRef] [Green Version]
- Guidolin, M.; Mortarino, C. Cross-country diffusion of photovoltaic systems: Modelling choices and forecasts for national adoption patterns. Technol. Forecast. Soc. Chang. 2010, 77, 279–296. [Google Scholar] [CrossRef] [Green Version]
- Kwan, C.L. Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States. Energy Policy 2012, 47, 332–344. [Google Scholar] [CrossRef]
- Cherrington, R.; Goodship, V.; Longfield, A.; Kirwan, K. The feed-in tariff in the UK: A case study focus on domestic photovoltaic systems. Renew. Energy 2013, 50, 421–426. [Google Scholar] [CrossRef]
- Jenner, S.; Groba, F.; Indvik, J. Assessing the strength and effectiveness of renewable electricity feed-in-tariffs in European Union countries. Energy Policy 2013, 52, 385–401. [Google Scholar] [CrossRef] [Green Version]
- Bauner, C.; Crago, C.L. Adoption of residential solar power under uncertainty: Implications for renewable energy incentives. Energy Policy 2015, 86, 27–35. [Google Scholar] [CrossRef]
- Chodkowska-Miszczuk, J.; Szymańska, D. Update of the review: Cultivation of energy crops in Poland against socio-demographic factors. Renew. Sustain. Energy Rev. 2011, 15, 4242–4247. [Google Scholar] [CrossRef]
- Brudermann, T.; Reinsberger, K.; Orthofer, A.; Kislinger, M.; Posch, A. Photovoltaics in agriculture: A case study on decision making of farmers. Energy Policy 2013, 61, 96–103. [Google Scholar] [CrossRef]
- Bakundukize, A.; Twizerimana, M.; Bernadette, D.; Bizabakoraho, J.P.; Nsekambabaye, T. Design and Modelling of PV Power Plant for Rural Electrification in Kayonza, Rwanda. J. Energy Res. Rev. 2021, 7, 31–55. [Google Scholar] [CrossRef]
- Irfan, M.; Yadav, S.; Shaw, K. The adoption of solar photovoltaic technology among Indian households: Examining the influence of entrepreneurship. Technol. Forecast. Soc. Chang. 2021, 169, 120815. [Google Scholar] [CrossRef]
- Jager, W. Stimulating the diffusion of photovoltaic systems: A behavioural perspective. Energy Policy 2006, 34, 1935–1943. [Google Scholar] [CrossRef]
- Owens, S.; Driffill, L. How to change attitudes and behaviours in the context of energy. Energy Policy 2008, 36, 4412–4418. [Google Scholar] [CrossRef]
- Islam, T.; Meade, N. The impact of attribute preferences on adoption timing: The case of photo-voltaic (PV) solar cells for household electricity generation. Energy Policy 2013, 55, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Fokaides, P.A.; Kylili, A. Towards grid parity in insular energy systems: The case of photovoltaics (PV) in Cyprus. Energy Policy 2014, 65, 223–228. [Google Scholar] [CrossRef]
- Beckman, J.; Xiarchos, I.M. Why are Californian farmers adopting more (and larger) renewable energy operations? Renew. Energy 2013, 55, 322–330. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Sutherland, L.-A.; Polhill, J.G.; Matthews, K.; Miller, D.; Wardell-Johnson, D. Exploring factors affecting on-farm renewable energy adoption in Scotland using large-scale microdata. Energy Policy 2017, 107, 548–560. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.; Clark, C.; Ellis, P.; English, B.; Menard, J.; Walsh, M.; de la Torre-Ugarte, D. Farmer willingness to grow switchgrass for energy production. Biomass Bioenergy 2007, 31, 773–781. [Google Scholar] [CrossRef] [Green Version]
- Tate, G.; Mbzibain, A.; Ali, S.A. comparison of the drivers influencing farmers’ adoption of enterprises associated with renewable energy. Energy Policy 2012, 49, 400–409. [Google Scholar] [CrossRef]
- Borchers, A.M.; Xiarchos, I.; Beckman, J. Determinants of wind and solar energy system adoption by U.S. farms: A multilevel modeling approach. Energy Policy 2014, 69, 106–115. [Google Scholar] [CrossRef]
- Sutherland, L.A.; Toma, L.; Barnes, A.P.; Matthews, K.B.; Hopkins, J. Agri-environmental diversification: Linking environmental, forestry and renewable energy engagement on Scottish farms. J. Rural Stud. 2016, 47, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Welsch, H.; Kühling, J. Determinants of pro-environmental consumption: The role of reference groups and routine behavior. Ecol. Econ. 2009, 69, 166–176. [Google Scholar] [CrossRef]
- Sutherland, L.A.; Holstead, K.L. Future-proofing the farm: On-farm wind turbine development in farm business decision-making. Land Use Policy 2014, 36, 102–112. [Google Scholar] [CrossRef]
- Reise, C.; Musshoff, R.; Granoszewski, K.; Spiller, A. Which factors influence the expansion of bioenergy? An empirical study of the investment behaviours of German farmers. Ecol. Econ. 2012, 73, 133–141. [Google Scholar] [CrossRef]
- Shi, L.; Zhou, W.; Kriström, B. Residential demand for green electricity. Environ. Econ. 2013, 4, 39–50. [Google Scholar]
- Bartolini, F.; Viaggi, D. An analysis of policy scenario effects on the adoption of energy production on the farm: A case study in Emilia—Romagna (Italy). Energy Policy 2012, 51, 454–464. [Google Scholar] [CrossRef]
- Ruiz-Fuensanta, M.J.; Gutiérrez-Pedrero, M.J.; Tarancón, M.A. The Role of Regional Determinants in the Deployment of Renewable Energy in Farms. The Case of Spain. Sustainability 2019, 11, 5937. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, A.; Düvelmeyer, C. Regional drivers of on-farm energy production in Bavaria. Energy Policy 2016, 95, 361–369. [Google Scholar] [CrossRef]
- Walsh, M. Energy tax credits and housing improvements. Energy Econ. 1989, 11, 275–284. [Google Scholar] [CrossRef]
- Poortinga, W.; Steg, L.; Vleg, C.; Wiesma, G. Household preference for energy saving measures: A conjoint analysis. J. Econ. Psychol. 2003, 24, 49–64. [Google Scholar] [CrossRef]
- Meade, N.; Islam, T. Modelling and forecasting the diffusionof innovation—A 25 year review. Int. J. Forecast. 2006, 22, 519–545. [Google Scholar] [CrossRef]
- Kim, K.-K.; Lee, C.-G. Evaluation and optimization of feed-in-tariffs. Energy Policy 2012, 49, 129–203. [Google Scholar] [CrossRef]
- Mój Prąd Może Ruszyć od 1 Lipca. Available online: https://www.rynekelektryczny.pl/stan-programu-moj-prad/ (accessed on 20 May 2021).
- Olczak, P.; Kryzia, D.; Matuszewska, D.; Kuta, M. “My Electricity” Program Effectiveness Supporting the Development of PV Installation in Poland. Energies 2021, 14, 231. [Google Scholar] [CrossRef]
- Iwaszczuk, N.; Trela, M. Analysis of the Impact of the Assumed Moment of Meeting Total Energy Demand on the Profitability of Photovoltaic Installations for Households in Poland. Energies 2021, 14, 1637. [Google Scholar] [CrossRef]
- Czyste Powietrze w Liczbach. Available online: https://czystepowietrze.gov.pl (accessed on 20 May 2021).
- European Commission. 2020: State of the Union: Commission Raises Climate Ambition and Proposes 55% Cut in Emissions by 2030. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_20_1599 (accessed on 16 March 2021).
- Ministerstwo Aktywów Państwowych. National Energy and Climate Plan for the Years 2021–2030 (Krajowy Plan na Rzecz Energii i Klimatu na Lata 2021–2030. Założenia i Cele Oraz Polityki i Działania); Ministerstwo Aktywów Państwowych: Warszawa, Polska, 18 December 2019. [Google Scholar]
- Council of the European Union; European Parliament. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009, L 140, 16–62. [Google Scholar]
- Energia ze Źródeł Odnawialnych w 2018 r.; Central Statistical Office (GUS): Warszawa, Poland, 2019.
- EEA. Air Quality in Europe—2015 Report. Raport Europejskiej Agencji Środowiska (EEA). 2015. Available online: http://www.eea.europa.eu//publications/air-quality-in-europe-2015 (accessed on 9 January 2021).
- Liu, W.L.; Spaargaren, G.; Heerink, N.; Mol, A.P.J.; Wang, C. Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development. Energy Policy 2013, 55, 128–138. [Google Scholar] [CrossRef]
- Gosens, J.; Lu, Y.L.; He, G.Z.; Bluemling, B.; Beckers, T.A.M. Sustainability effects of household-scale biogas in rural China. Energy Policy 2013, 54, 273–287. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Wang, X. Farmers’ willingness to convert traditional houses to solar houses in rural areas: A survey of 465 households in Chongqing, China. Energy Policy 2013, 63, 882–886. [Google Scholar] [CrossRef] [Green Version]
- Maddala, G.S. Ekonometria; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2008; p. 372. [Google Scholar]
- Cramer, J.S. The early origins of the logit model. Stud. Hist. Philos. Sci. Part C 2004, 35, 613–626. [Google Scholar] [CrossRef]
- Welfe, A. Ekonometria. METODY i Ich Zastosowanie; PWE: Warszawa, Poland, 2009. [Google Scholar]
- Kot, S.M.; Jakubowski, J.; Sokołowski, A. Statystyka; Difin: Warszawa, Poland, 2011; pp. 293–295. [Google Scholar]
- Pułaska-Turyna, B. Statystyka Dla Ekonomistów; Difin: Warszawa, Poland, 2008; pp. 284–285. [Google Scholar]
- Lechwar, M. Analysis of Potential of Renewable Energy Sources in the PL-UA Cross-Border Region, [w:] Practical Guide to RES Development with Examples of Good Practices; Regional Development Agency: Rzeszow, Poland, 2014. [Google Scholar]
- Czyżewski, A.; Kata, R.; Matuszczak, A. Wpływ Wydatków Budżetowych na Zmiany Strukturalne i Dochody w Rolnictwie w Warunkach Funkcjonowania w Polsce Instrumentów WPR. Ekonomista 2020, 6, 781–811. [Google Scholar]
- Raport Zawierający Zbiorcze Informacje Dotyczące Energii Elektrycznej Wytworzonej z Odnawialnego Źródła Energii w Mikroinstalacji (w Tym Przez Prosumentów) i Wprowadzonej do Sieci Dystrybucyjnej w 2020 r.; Urząd Regulacji Energetyki: Warszawa, Polska, 2021.
- Strategia Zrównoważonego Rozwoju Wsi, Rolnictwa i Rybactwa 2030; Ministerstwo Rolnictwa i Rozwoju Wsi: Warszawa, Polska, 2019.
- Ogłoszenie Prezesa Agencji Restrukturyzacji i Modernizacji Rolnictwa z Dnia 16 Września 2020 r. w Sprawie Wielkości Średniej Powierzchni Gruntów Rolnych w Gospodarstwie Rolnym w Poszczególnych Województwach, ARiMR. Available online: https://www.arimr.gov.pl/pomoc-krajowa/srednia-powierzchnia-gospodarstwa.html (accessed on 16 March 2021).
Variable | Symbol | Regression | |
---|---|---|---|
Logit Y1i | Multiple Y2i | ||
Having other RES installations (0/1) | X1 | + | + |
Age of the farm manager (years) | X2 | + | + |
Farm area (ha of agricultural land) | X3 | + | + |
Using repayable funds (loans, leasing) to finance investments in renewable energy (0/1) | X4 | + | + |
Use of renewable energy subsidies (0/1) | X5 | + | + |
Specialized or targeted holding (0/1) | X6 | + | + |
Saving energy costs is of great importance (points 1–3) | X7 | + | + |
Environmental responsibility is of great importance (0/1) | X8 | + | + |
It is of great importance to increase the quality of life (0/1) | X9 | + | + |
Neighborly prestige is of great importance (0/1) | X10 | + | + |
High importance of tax benefits (pkt 1–2) | X11 | − | + |
Use of undeveloped space (0/1) | X12 | − | + |
The farm is focused on animal production (0/1) | X13 | − | + |
The farm functions as a special department (0/1) | X14 | − | + |
The farm carries out organic production (0/1) | X15 | − | + |
The farm runs agritourism production (0/1) | X16 | − | + |
The farm sells agricultural products (0/1) | X17 | − | + |
A farm associated in a production group (0/1) | X18 | − | + |
VAT on general terms (0/1) | X19 | − | + |
No. | Direction of Using Energy from RES | Percentage of Farms | |
---|---|---|---|
With a Photovoltaic Installation | With Solar Installation | ||
1 | Only in the household | 41.4 | 84.5 |
2 | Only for agricultural production | 6.3 | 8.6 |
3 | Both in agricultural production and in the household | 52.3 | 6.9 |
No. | Farm Profile | Percentage of Farms in the Group with an Installation | Share of Farms in the Group by Area of Energy Use for the Purposes of: | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Only Agricultural Production | Agricultural and Living Production of the Family | |||||||||
PV | Solar | Other RES | PV | Solar | Other RES | PV | Solar | Other RES | ||
1. | Plant production oriented 1 | 48.6 | 33.8 | 8.3 | 2.9 | - | - | 62.9 | 22.6 | 33.3 |
2. | Animal production oriented 2 | 60.7 | 43.1 | 14.3 | 5.9 | 28.6 | - | 70.6 | 28.6 | 25.0 |
3. | Special department 3 | 50.0 | 50.0 | - | - | - | - | 100.0 | 100.0 | - |
4. | Multidirectional farms 4 | 62.2 | 47.6 | 4.0 | 6.5 | 4.0 | - | 47.8 | 40.0 | - |
5. | Only those keeping the land in good agricultural condition 5 | 47.6 | 25.0 | 4.8 | 10.0 | 10.0 | - | 20.0 | 10.0 | - |
6. | Ecological 6 | 50.0 | 25.0 | 25.0 | 50.0 | 100.0 | - | - | - | - |
7. | Conducting agritourism activities 7 | 50.0 | - | 50.0 | - | - | - | - | - | - |
No. | Objectives of the Use of Renewable Energy | Type of RES Installation | ||
---|---|---|---|---|
Photovoltaic | Solar | Other | ||
Household | ||||
1 | Lighting of living quarters | 3.8 | - | 0.5 |
2 | Domestic water heating | 2.5 | 3.0 | 1.5 |
3 | Heating of living quarters | 1.8 | 0.7 | 1.7 |
4 | Air conditioning, ventilation | 0.7 | - | 0.2 |
5 | Other | 0.1 | - | - |
Agricultural Production | ||||
1 | Room lighting | 2.5 | - | 0.2 |
2 | Heating water for agricultural production | 1.3 | 2.0 | 0.4 |
3 | Product cooling | 1.0 | - | 0.1 |
4 | Drying of agricultural produce | 0.8 | - | 0.1 |
5 | Space heating or cooling | 0.6 | 0.5 | 0.5 |
6 | Drive of agricultural vehicles and machines | 0.5 | - | - |
7 | Irrigation or drainage of land | 0.3 | - | 0.1 |
8 | Other | 0.2 | - | - |
No. | Type of Funding Sources | Structure of Financing Investments in Renewable Energy (%) | Percentage of Farmers Engaging Specific Sources of Financing (%) | ||
---|---|---|---|---|---|
Implemented | Planned | Completed Investments | Planned Investments | ||
1 | Own funds | 59.0 | 42.8 | 87.3 | 88.8 |
2 | Bank credit, loans | 5.9 | 7.5 | 12.0 | 18.2 |
3 | Subsidies, tax breaks | 34.4 | 47.8 | 69.3 | 88.1 |
4 | Leasing | 0.7 | 1.9 | 0.7 | 3.5 |
Variable | Factor | Standard Error | t-Statistic | p-Value |
---|---|---|---|---|
Const | 3.82243 | 1.5108 | 2.5300 | 0.0391 |
X1—Having other RES installations (0/1) | 2.91298 | 0.7041 | 4.1370 | 0.0434 |
X2—Farmer’s age (years) | −2.29318 | 1.1629 | −1.9720 | 0.0172 |
X3—Farm area (ha of agricultural land) | 0.95583 | 0.4779 | 2.0001 | 0.0161 |
X5—Use of renewable energy subsidies (0/1) | 1.96388 | 0.8834 | 2.2230 | 0.0331 |
Number of observations 226, p-value = 0.05 | ||||
Number of cases of correct prediction 91.6% | ||||
Chi-square 93.27, Corrected R2 0.37, McFadden R2 0.55 |
Variable | Factor | Standard Error | t-Statistic | p-Value |
---|---|---|---|---|
Const | 1.7389 | 2.1971 | 0.7915 | 0.0041 |
X2—Farmer’s age (years) | −2.1109 | 0.2378 | −8.8768 | 0.0178 |
X3—Farm area (ha of agricultural land) | 1.2119 | 0.1781 | 6.8046 | 0.0206 |
X7—Saving energy costs is of great importance | 1.7927 | 2.4493 | 0.7319 | 0.0083 |
X13—The farm is focused on animal production | 0.3762 | 6.7281 | 0.0560 | 0.0439 |
X17—The farm sells agricultural products | 0.9781 | 0.8291 | 1.1797 | 0.0349 |
Number of observations 150, p-value = 0.05, F 0.0076 | ||||
R 0.879, R2 0.774, Corrected R2 0.683 | ||||
AIC 143.479, White’s test 0.454, Test for the normality of the distribution of residuals 0.0799 |
Benefits of RES Installations | Holding Area | Farmer’s Age | Farm Commodity | Direction of Agricultural Production | Form of Taxation |
---|---|---|---|---|---|
Environmental benefits | 0.32260 | 0.40162 | 0.03642 VC = 0.244 | 0.00898 VC = 0.250 | 0.29074 |
Reducing household expenses | 0.07938 | 0.87685 | 0.74990 | 0.80779 | 0.39668 |
Reduction in agricultural production costs | 0.02028 VC = 0.258 | 0.12588 | 0.00500 VC = 0.287 | 0.04700 VC = 0.230 | 0.25008 |
Tax benefits | 0.15375 | 0.73025 | 0.013474 VC = 0.210 | 0.46465 | 0.047089 VC = 0.157 |
The possibility of selling surplus energy | 0.67912 | 0.24905 | 0.03024 VC = 0.257 | 0.37347 | 0.66543 |
Availability of grants and other low-cost sources of funding | 0.04533 VC = 0.229 | 0.12665 | 0.00410 VC = 0.297 | 0.20131 | 0.029346 VC = 0.185 |
Prestige, recognition in the local community | 0.31922 | 0.65037 | 0.04219 VC = 0.237 | 0.24749 | 0.28013 |
Increasing the quality of life | 0.12832 | 0.56699 | 0.1245 | 0.2232 | 0.02402 VC = 0.168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kata, R.; Cyran, K.; Dybka, S.; Lechwar, M.; Pitera, R. Economic and Social Aspects of Using Energy from PV and Solar Installations in Farmers’ Households in the Podkarpackie Region. Energies 2021, 14, 3158. https://doi.org/10.3390/en14113158
Kata R, Cyran K, Dybka S, Lechwar M, Pitera R. Economic and Social Aspects of Using Energy from PV and Solar Installations in Farmers’ Households in the Podkarpackie Region. Energies. 2021; 14(11):3158. https://doi.org/10.3390/en14113158
Chicago/Turabian StyleKata, Ryszard, Kazimierz Cyran, Sławomir Dybka, Małgorzata Lechwar, and Rafał Pitera. 2021. "Economic and Social Aspects of Using Energy from PV and Solar Installations in Farmers’ Households in the Podkarpackie Region" Energies 14, no. 11: 3158. https://doi.org/10.3390/en14113158
APA StyleKata, R., Cyran, K., Dybka, S., Lechwar, M., & Pitera, R. (2021). Economic and Social Aspects of Using Energy from PV and Solar Installations in Farmers’ Households in the Podkarpackie Region. Energies, 14(11), 3158. https://doi.org/10.3390/en14113158