Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review
Abstract
:1. Introduction
1.1. Modernization and Energy Efficiency for Business Strategies and Competitiveness
1.2. Prospects for Modernization of Russian Energy Sector
2. Energy Sector in Russia: Recent Development and Future Prospects
- An increase in the share of distributed generation in the total energy production;
- An increase in the share of consumption of higher-quality and more environmentally friendly energy throughout the cycle of energy production.
2.1. Brief Overview of the Russian Energy Sector
2.2. Approaches to the Energy Management: The Case of Russia
2.3. Energy Intensity and RES in Russia
3. Energy Efficiency and Energy Management
3.1. Modernization of Energy Efficiency
3.2. Effective Energy Management Systems in Russia
4. Pathways for the Modernization of Power Distribution Electrical Systems in Russia
4.1. Plans and Initiatives for the Modernization of the Electric Power Sector in Russia
4.2. Main Obstacles and Reasons for the Electrical Power Sector in Russia
5. Conclusions and Implications
- Launching open modular digital platforms for organizing cyber-physical systems and environments in the power industry;
- Developing the intelligent multi-agent control systems;
- Formation of the market segment of energy storage systems (from batteries for electric vehicles and the household sector to large energy storage systems capacities, including technologies for storing electricity in the hydrogen cycle);
- Developing the advanced high-voltage and high-frequency power electronics sector;
- Introducing the technologies leading to the “Internet of Things” (e.g., digital sensors, sensors, actuators and communication tools);
- Using digital financial technologies (blockchain, smart contracts, decentralized autonomous organizations).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dunlop, T. Mind the gap: A social sciences review of energy efficiency. Energy Res. Soc. Sci. 2019, 56, 101216. [Google Scholar] [CrossRef]
- Huber, R.A.; Maltby, T.; Szulecki, K.; Ćetković, S. Is populism a challenge to European energy and climate policy? Empirical evidence across varieties of populism. J. Eur. Public Policy 2021, 1–20. [Google Scholar] [CrossRef]
- Dell’Anna, F. Green jobs and energy efficiency as strategies for economic growth and the reduction of environmental impacts. Energy Policy 2020, 149, 112031. [Google Scholar] [CrossRef]
- Newbery, D.; Pollitt, M.G.; Ritz, R.A.; Strielkowski, W. Market design for a high-renewables European electricity system. Renew. Sustain. Energy Rev. 2018, 91, 695–707. [Google Scholar] [CrossRef] [Green Version]
- McElroy, D.J.; Rosenow, J. Policy implications for the performance gap of low-carbon building technologies. Build. Res. Inf. 2019, 47, 611–623. [Google Scholar] [CrossRef]
- Marinakis, V. Big data for energy management and energy-efficient buildings. Energies 2020, 13, 1555. [Google Scholar] [CrossRef] [Green Version]
- Bertoldi, P.; Mosconi, R. Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States). Energy Policy 2020, 139, 111320. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, J.H.; Sun, D.Q. Untangling global levelised cost of electricity based on multi-factor learning curve for renewable energy: Wind, solar, geothermal, hydropower and bioenergy. J. Clean. Prod. 2021, 285, 124827. [Google Scholar] [CrossRef]
- Füllemann, Y.; Moreau, V.; Vielle, M.; Vuille, F. Hire fast, fire slow: The employment benefits of energy transitions. Econ. Syst. Res. 2020, 32, 202–220. [Google Scholar] [CrossRef]
- Zou, P.X.; Wagle, D.; Alam, M. Strategies for minimizing building energy performance gaps between the design intend and the reality. Energy Build. 2019, 191, 31–41. [Google Scholar] [CrossRef]
- Killip, G.; Owen, A.; Topouzi, M. Exploring the practices and roles of UK construction manufacturers and merchants in relation to housing energy retrofit. J. Clean. Prod. 2020, 251, 119205. [Google Scholar] [CrossRef]
- Gunawan, J.; Permatasari, P.; Tilt, C. Sustainable development goal disclosures: Do they support responsible consumption and production? J. Clean. Prod. 2020, 246, 118989. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Kraus, S.; Burtscher, J.; Vallaster, C.; Angerer, M. Sustainable entrepreneurship orientation: A reflection on status-quo research on factors facilitating responsible managerial practices. Sustainability 2018, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Yong, J.Y.; Yusliza, M.Y.; Ramayah, T.; Chiappetta Jabbour, C.J.; Sehnem, S.; Mani, V. Pathways towards sustainability in manufacturing organizations: Empirical evidence on the role of green human resource management. Bus. Strategy Environ. 2020, 29, 212–228. [Google Scholar] [CrossRef]
- Johnstone, P.; Rogge, K.S.; Kivimaa, P.; Fratini, C.F.; Primmer, E.; Stirling, A. Waves of disruption in clean energy transitions: Sociotechnical dimensions of system disruption in Germany and the United Kingdom. Energy Res. Soc. Sci. 2020, 59, 101287. [Google Scholar] [CrossRef]
- Heikkurinen, P.; Young, C.W.; Morgan, E. Business for sustainable change: Extending eco-efficiency and eco-sufficiency strategies to consumers. J. Clean. Prod. 2019, 218, 656–664. [Google Scholar] [CrossRef]
- Alam, M.; Zou, P.X.; Stewart, R.A.; Bertone, E.; Sahin, O.; Buntine, C.; Marshall, C. Government championed strategies to overcome the barriers to public building energy efficiency retrofit projects. Sustain. Cities Soc. 2019, 44, 56–69. [Google Scholar] [CrossRef]
- Palm, J.; Backman, F. Energy efficiency in SMEs: Overcoming the communication barrier. Energy Effic. 2020, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tronchin, L.; Manfren, M.; Nastasi, B. Energy efficiency, demand side management and energy storage technologies–A critical analysis of possible paths of integration in the built environment. Renew. Sustain. Energy Rev. 2018, 95, 341–353. [Google Scholar] [CrossRef]
- Javaid, S.; Javaid, N. Comfort evaluation of seasonally and daily used residential load in smart buildings for hottest areas via predictive mean vote method. Sustain. Comput. Inform. Syst. 2020, 25, 100369. [Google Scholar] [CrossRef]
- Strielkowski, W.; Veinbender, T.; Tvaronavičienė, M.; Lace, N. Economic efficiency and energy security of smart cities. Econ. Res. Ekon. Istraživanja 2020, 33, 788–803. [Google Scholar] [CrossRef]
- Alekseev, A.N.; Lobova, S.V.; Bogoviz, A.V.; Ragulina, Y.V. Digitalization of the Russian energy sector: State-of-the-art and potential for future research. Int. J. Energy Econ. Policy 2019, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Kapustin, N.O.; Grushevenko, D.A. Exploring the implications of Russian Energy Strategy project for oil refining sector. Energy Policy 2018, 117, 198–207. [Google Scholar] [CrossRef]
- Makarov, A.A. Half a Century of Systems Studies into Developing the Power Industry in the Soviet Union and Russia: What Next? Therm. Eng. 2020, 67, 863–871. [Google Scholar] [CrossRef]
- Gokhberg, L.; Sokolov, A. Technology foresight in Russia in historical evolutionary perspective. Technol. Forecast. Soc. Chang. 2017, 119, 256–267. [Google Scholar] [CrossRef]
- Proskuryakova, L.N.; Ermolenko, G.V. The future of Russia’s renewable energy sector: Trends, scenarios and policies. Renew. Energy 2019, 143, 1670–1686. [Google Scholar] [CrossRef]
- Westphal, K. German-Russian gas relations in face of the energy transition. Russ. J. Econ. 2020, 6, 406–423. [Google Scholar] [CrossRef]
- Mitrova, T.; Melnikov, Y. Energy transition in Russia. Energy Transit. 2019, 3, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Proedrou, F. Russian energy policy and structural power in Europe. Eur. Asia Stud. 2018, 70, 75–89. [Google Scholar] [CrossRef]
- Favorskii, O.N.; Batenin, V.M.; Maslennikov, V.M. Where to Start the Implementation of Russia’s Energy Strategy. Her. Russ. Acad. Sci. 2015, 85, 1–7. [Google Scholar] [CrossRef]
- Proskuryakova, L.; Starodubtseva, A.; Bianco, V. Modelling a household tariff for reducing sectoral cross-subsidies in the Russian power market. Energy 2020, 213, 118725. [Google Scholar] [CrossRef]
- Asaul, A.N.; Asaul, M.A.; Levin, Y.A.; Platonov, A.M. Energy Supply to Isolated Areas: Attracting Investment and Developing Regional Economy. Econ. Reg. 2020, 3, 884–895. [Google Scholar] [CrossRef]
- Lisin, E.; Kindra, V.; Zlyvko, O.; Strielkowski, W.; Bartkute, R. Economic analysis of heat and electricity production in the decentralisation of the Russian energy sector. Transform. Bus. Econ. 2017, 16, 75–88. [Google Scholar]
- Gazprom. Gasification of Russian Regions. 2020. Available online: https://mrg.gazprom.ru/about/gasification (accessed on 12 May 2021).
- Palyanova, N.V.; Zadkov, D.A.; Chubukova, S.G. Legal framework for the sustainable economic and ecological development in the coal industry in Russia. Eurasian Min. 2017, 1, 3–5. [Google Scholar] [CrossRef]
- Sorokin, A.P.; Konyushok, A.A.; Ageev, O.A.; Zarubina, N.V.; Ivanov, V.V.; Wang, J. Distribution of rare earth and selected trace elements in combustion products of Yerkovetskoe brown coal deposit (Amur Region, Russia). Energy Explor. Exploit. 2019, 37, 1721–1736. [Google Scholar] [CrossRef] [Green Version]
- UNECE. Russian Coal Sector. 2002. Available online: https://unece.org/ (accessed on 10 May 2021).
- Nevskaya, M.A.; Seleznev, S.G.; Masloboev, V.A.; Klyuchnikova, E.M.; Makarov, D.V. Environmental and business challenges presented by mining and mineral processing waste in the Russian Federation. Minerals 2019, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Tsepelev, O.A.; Serikov, S.G. Peculiarities of Regional Development and Industrial Specialization of the Far East of Russia. J. Appl. Econ. Sci. 2017, 12, 1301–1311. [Google Scholar]
- Lisin, E.; Strielkowski, W.; Krivokora, E. Economic Analysis of Industrial Development: A Case of Russian Coal Industry. Montenegrin J. Econ. 2016, 12, 129–139. [Google Scholar] [CrossRef]
- Aalto, P.; Forsberg, T. The structuration of Russia’s geo-economy under economic sanctions. Asia Eur. J. 2016, 14, 221–237. [Google Scholar] [CrossRef]
- Karatayev, M.; Hall, S. Establishing and comparing energy security trends in resource-rich exporting nations (Russia and the Caspian Sea region). Resour. Policy 2020, 68, 101746. [Google Scholar] [CrossRef]
- Makarov, I.; Chen, H.; Paltsev, S. Impacts of climate change policies worldwide on the Russian economy. Clim. Policy 2020, 20, 1242–1256. [Google Scholar] [CrossRef]
- Bradshaw, M.; Van de Graaf, T.; Connolly, R. Preparing for the new oil order? Saudi Arabia and Russia. Energy Strategy Rev. 2019, 26, 100374. [Google Scholar] [CrossRef]
- Polyakova, A.G.; Ramakrishna, S.A.; Kolmakov, V.V.; Zavyalov, D.V. A model of fuel and energy sector contribution to economic growth. Int. J. Energy Econ. Policy 2019, 9, 25–31. [Google Scholar] [CrossRef]
- Siddi, M. The role of power in EU–Russia energy relations: The interplay between markets and geopolitics. Eur. Asia Stud. 2018, 70, 1552–1571. [Google Scholar] [CrossRef]
- Makarov, A.A. Technological progress opportunities in the energy sector of Russia. Stud. Russ. Econ. Dev. 2020, 31, 52–63. [Google Scholar] [CrossRef]
- Grouiez, P.; Vercueil, J.; Volkov, D.D. Beyond oil: The international integration of the Russian economy between macroeconomic constraints and sectoral dynamics. Post Communist Econ. 2021, 1–25. [Google Scholar] [CrossRef]
- European Commission. European Economic Forecast. 2020. Available online: https://ec.europa.eu/info/sites/default/files/economy-finance/ip125_en.pdf (accessed on 12 May 2021).
- IEA. Russia: Country Profile. Available online: https://www.iea.org/countries/russia (accessed on 21 February 2021).
- Shalaeva, D.S.; Kukartseva, O.I.; Tynchenko, V.S.; Kukartsev, V.V.; Aponasenko, S.V.; Stepanova, E.V. Analysis of the development of global energy production and consumption by fuel type in various regions of the world. IOP Conf. Ser. Mater. Sci. Eng. 2020, 952, 012025. [Google Scholar] [CrossRef]
- Arens, M.; Åhman, M.; Vogl, V. Which countries are prepared to green their coal-based steel industry with electricity?-Reviewing climate and energy policy as well as the implementation of renewable electricity. Renew. Sustain. Energy Rev. 2021, 143, 110938. [Google Scholar] [CrossRef]
- Yennie-Lindgren, W. New dynamics in Japan-Russia energy relations 2011–2017. J. Eurasian Stud. 2018, 9, 152–162. [Google Scholar] [CrossRef]
- Ministry of Energy of Russian Federation. 2021 Energy Statistics. Available online: https://minenergo.gov.ru/activity/statistic (accessed on 20 May 2021).
- Aalto, P.; Nyyssönen, H.; Kojo, M.; Pal, P. Russian nuclear energy diplomacy in Finland and Hungary. Eurasian Geogr. Econ. 2017, 58, 386–417. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.F.; Chen, G.Q. Coal use embodied in globalized world economy: From source to sink through supply chain. Renew. Sustain. Energy Rev. 2018, 81, 978–993. [Google Scholar] [CrossRef]
- Kan, S.Y.; Chen, B.; Wu, X.F.; Chen, Z.M.; Chen, G.Q. Natural gas overview for world economy: From primary supply to final demand via global supply chains. Energy Policy 2019, 124, 215–225. [Google Scholar] [CrossRef]
- World Bank. Electric Power Consumption–Russian Federation. 2021. Available online: https://data.worldbank.org/indicator (accessed on 12 October 2021).
- Rodionova, I.; Kokuytseva, T.; Shuvalova, O. Innovative energy policy of the of the Eurasian Economic Union member countries. E3S Web Conf. 2020, 159, 02002. [Google Scholar] [CrossRef] [Green Version]
- Jääskeläinen, J.J.; Höysniemi, S.; Syri, S.; Tynkkynen, V.P. Finland’s dependence on Russian energy—Mutually beneficial trade relations or an energy security threat? Sustainability 2018, 10, 3445. [Google Scholar] [CrossRef] [Green Version]
- Lüthi, L.M. Drifting Apart: Soviet Energy and the Cohesion of the Communist Bloc in the 1970s and 1980s. Cold War Energy; Palgrave Macmillan: Cham, Switzerland, 2017; pp. 371–399. [Google Scholar] [CrossRef]
- De Groot, M. The Soviet Union, CMEA, and the Energy Crisis of the 1970s. J. Cold War Stud. 2020, 22, 4–30. [Google Scholar] [CrossRef]
- Lezier, V.; Gusarova, M.; Kopytova, A. Energy management in modern Russia: Problems, development trends, prospects. IOP Conf. Ser. Earth Environ. Sci. 2017, 90, 012034. [Google Scholar] [CrossRef] [Green Version]
- Josefson, J.; Rotar, A.; Lewis, M. Electricity Regulation in the Russian Federation: Overview. 2020. Available online: https://uk.practicallaw.thomsonreuters.com/6-527-2969?transitionType=Default&contextData=(sc.Default) (accessed on 20 February 2021).
- Gitelman, L.; Magaril, E.; Kozhevnikov, M.; Rada, E.C. Rational behavior of an enterprise in the energy market in a circular economy. Resources 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Zotkina, N.; Gusarova, M.; Kopytova, A. Labor Management in Organizational Structures of Russian Energy Enterprises. In Energy Management of Municipal Transportation Facilities and Transport; Springer: Cham, Switzerland, 2017; pp. 1204–1213. [Google Scholar] [CrossRef]
- Matraeva, L.; Solodukha, P.; Erokhin, S.; Babenko, M. Improvement of Russian energy efficiency strategy within the framework of “green economy” concept (based on the analysis of experience of foreign countries). Energy Policy 2019, 125, 478–486. [Google Scholar] [CrossRef]
- Koch, N.; Tynkkynen, V.P. The geopolitics of renewables in Kazakhstan and Russia. Geopolitics 2019, 1–20. [Google Scholar] [CrossRef]
- An, J.; Dorofeev, M.; Zhu, S. Development of energy cooperation between Russia and China. Int. J. Energy Econ. Policy 2020, 10, 134. [Google Scholar] [CrossRef]
- Smeets, N. The Green Menace: Unraveling Russia’s elite discourse on enabling and constraining factors of renewable energy policies. Energy Res. Soc. Sci. 2018, 40, 244–256. [Google Scholar] [CrossRef]
- Talipova, A.; Parsegov, S.G.; Tukpetov, P. Russian gas exchange: A new indicator of market efficiency and competition or the instrument of monopolist? Energy Policy 2019, 135, 111012. [Google Scholar] [CrossRef]
- Grigoryev, L.M.; Medzhidova, D.D. Global energy trilemma. Russ. J. Econ. 2020, 6, 437–462. [Google Scholar] [CrossRef]
- Dudin, M.N.; Zasko, V.N.; Dontsova, O.I.; Osokina, I.V. The energy politics of the european union and the possibility to implement it in post-soviet states. Int. J. Energy Econ. Policy 2020, 10, 409–416. [Google Scholar] [CrossRef]
- Ministry of Economic Development of Russia. 2019 Report on the on the State of Energy Conservation and Energy Efficiency in the Russian Federation. Available online: https://economy.gov.ru/material/file/c3901dba442f8e361d68bc019d7ee83f/Energyefficiency2020.pdf (accessed on 14 May 2021).
- Gavrikova, E.; Burda, Y.; Gavrikov, V.; Sharafutdinov, R.; Volkova, I.; Rubleva, M.; Polosukhina, D. Clean energy sources: Insights from Russia. Resources 2019, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Lanshina, T.A.; John, A.; Potashnikov, V.Y.; Barinova, V.A. The slow expansion of renewable energy in Russia: Competitiveness and regulation issues. Energy Policy 2018, 120, 600–609. [Google Scholar] [CrossRef]
- Chebotareva, G.; Strielkowski, W.; Streimikiene, D. Risk assessment in renewable energy projects: A case of Russia. J. Clean. Prod. 2020, 269, 122110. [Google Scholar] [CrossRef]
- Mitrova, T.; Melnikov, Y. A carbon-free world–What is Russia’s response? Annales des Mines 2019, 3, 128–132. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy Prospects for the Russian Federation. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Apr/IRENA_REmap_Russia_paper_2017.pdf (accessed on 24 February 2021).
- Trianni, A.; Cagno, E.; Bertolotti, M.; Thollander, P.; Andersson, E. Energy management: A practice-based assessment model. Appl. Energy 2019, 235, 1614–1636. [Google Scholar] [CrossRef]
- Cooremans, C.; Schönenberger, A. Energy management: A key driver of energy-efficiency investment? J. Clean. Prod. 2019, 230, 264–275. [Google Scholar] [CrossRef]
- Iris, Ç.; Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renew. Sustain. Energy Rev. 2019, 112, 170–182. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Sci. Total Environ. 2019, 646, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Mikhaylov, A.; Moiseev, N.; Aleshin, K.; Burkhardt, T. Global climate change and greenhouse effect. Entrep. Sustain. Issues 2020, 7, 2897–2913. [Google Scholar] [CrossRef]
- Han, K.; Zhang, J. Energy-saving building system integration with a smart and low-cost sensing/control network for sustainable and healthy living environments: Demonstration case study. Energy Build. 2020, 214, 109861. [Google Scholar] [CrossRef]
- Töppel, J.; Tränkler, T. Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential. Energy Econ. 2019, 80, 842–859. [Google Scholar] [CrossRef]
- Strielkowski, W.; Firsova, I.; Lukashenko, I.; Raudeliūnienė, J.; Tvaronavičienė, M. Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions. Energies 2021, 14, 893. [Google Scholar] [CrossRef]
- Rathor, S.K.; Saxena, D. Energy management system for smart grid: An overview and key issues. Int. J. Energy Res. 2020, 44, 4067–4109. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L.; Tettey, U.Y. Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building. Energy 2017, 135, 563–576. [Google Scholar] [CrossRef]
- Mahyudin, N.K.B.; Zaini, Z.H.; Salleh, M.K.M.; Ahmad, A. A study of electrical energy efficiency building. J. Eng. Health Sci. 2019, 2, 9–18. [Google Scholar]
- Elavarasan, R.M.; Afridhis, S.; Vijayaraghavan, R.R.; Subramaniam, U.; Nurunnabi, M. SWOT analysis: A framework for comprehensive evaluation of drivers and barriers for renewable energy development in significant countries. Energy Rep. 2020, 6, 1838–1864. [Google Scholar] [CrossRef]
- Blok, K.; Afanador, A.; Van Der Hoorn, I.; Berg, T.; Edelenbosch, O.Y.; Van Vuuren, D.P. Assessment of sectoral greenhouse gas emission reduction potentials for 2030. Energies 2020, 13, 943. [Google Scholar] [CrossRef] [Green Version]
- Mehrjerdi, H.; Hemmati, R. Stochastic model for electric vehicle charging station integrated with wind energy. Sustainable Energy Technol. Assess. 2020, 37, 100577. [Google Scholar] [CrossRef]
- Al-Ali, A.R.; Zualkernan, I.A.; Rashid, M.; Gupta, R.; Alikarar, M. A smart home energy management system using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 2017, 63, 426–434. [Google Scholar] [CrossRef]
- Lai, C.S.; Jia, Y.; Dong, Z.; Wang, D.; Tao, Y.; Lai, Q.H.; Lai, L.L. A review of technical standards for smart cities. Clean Technol. 2020, 2, 19. [Google Scholar] [CrossRef]
- Marimon, F.; Casadesús, M. Reasons to adopt ISO 50001 energy management system. Sustainability 2017, 9, 1740. [Google Scholar] [CrossRef] [Green Version]
- Gui, E.M.; MacGill, I. Typology of future clean energy communities: An exploratory structure, opportunities, and challenges. Energy Res. Soc. Sci. 2018, 35, 94–107. [Google Scholar] [CrossRef]
- Sun, J.; Li, M.; Zhang, Z.; Xu, T.; He, J.; Wang, H.; Li, G. Renewable energy transmission by HVDC across the continent: System challenges and opportunities. CSEE J. Power Energy Syst. 2017, 3, 353–364. [Google Scholar] [CrossRef]
- Al Dakheel, J.; Del Pero, C.; Aste, N.; Leonforte, F. Smart buildings features and key performance indicators: A review. Sustain. Cities Soc. 2020, 102328. [Google Scholar] [CrossRef]
- Tishkov, S.; Shcherbak, A.; Karginova-Gubinova, V.; Volkov, A.; Tleppayev, A.; Pakhomova, A. Assessment the role of renewable energy in socio-economic development of rural and Arctic regions. Entrep. Sustain. Issues 2020, 7, 3354–3368. [Google Scholar] [CrossRef]
- Dementieva, A. Corporate Sector in Russia: What Happened and What Is Ahead Analysis. In Corporate Governance in Central Europe and Russia; Springer: Cham, Switzerland, 2020; pp. 199–217. [Google Scholar] [CrossRef]
- Kirillova, O.S. Local Content Within Extractive Resources Industry in the Russian Federation. In Sovereign Wealth Funds, Local Content Policies and CSR; Springer: Cham, Switzerland, 2021; pp. 359–369. [Google Scholar] [CrossRef]
- Mikhailov, V.E.; Ivanchenko, I.P.; Prokopenko, A.N. Modern State of Hydropower and Construction of Hydro Turbines in Russia and Abroad. Therm. Eng. 2021, 68, 83–93. [Google Scholar] [CrossRef]
- Gomonov, K.G.; Sipakova, P.O.; Chapurnaya, A.P. Introduction of microgeneration and energy-saving technologies within the concept of green economy: Foreign experience and Russia. RUDN J. Econ. 2019, 27, 442–454. [Google Scholar] [CrossRef]
- Laitner, J.A.; Lugovoy, O.V.; Potashnikov, V.Y. Cost and Benefits of Deep Decarbonization in Russia. Econ. Policy 2020, 15, 86–106. [Google Scholar] [CrossRef]
- Letova, K.; Yao, R.; Davidson, M.; Afanasyeva, E. A review of electricity markets and reforms in Russia. Util. Policy 2018, 53, 84–93. [Google Scholar] [CrossRef]
- Zhiznin, S.Z.; Timokhov, V.M.; Gusev, A.L. Economic aspects of nuclear and hydrogen energy in the world and Russia. Int. J. Hydrog. Energy 2020, 45, 31353–31366. [Google Scholar] [CrossRef]
- Goremyshev, A.; Kapustkin, V. World Nuclear Energy Development Trends and Russia’s Competitiveness at the Global Nuclear Market. Third International Economic Symposium (IES 2018); Atlantis Press: Paris, France, 2019; pp. 57–67. [Google Scholar] [CrossRef]
- Vershitsky, A.; Egorova, M.; Platonova;, S.; Berezniak, I.; Zatsarinnaya, E. Municipal infrastructure management using smart city technologies. Theor. Empir. Res. Urban Manag. 2021, 16, 20–39. [Google Scholar]
- World Nuclear Association. Nuclear Power in Russia. 2021. Available online: https://www.world-nuclear.org/information-library/country-profiles/countries-o-s/russia-nuclear-power.aspx (accessed on 3 April 2021).
- Safonov, G.; Potashnikov, V.; Lugovoy, O.; Safonov, M.; Dorina, A.; Bolotov, A. The low carbon development options for Russia. Clim. Change 2020, 162, 1929–1945. [Google Scholar] [CrossRef]
- Ho, M.; Obbard, E.; Burr, P.A.; Yeoh, G. A review on the development of nuclear power reactors. Energy Procedia 2019, 160, 459–466. [Google Scholar] [CrossRef]
- Akhmetshin, E.M.; Kopylov, S.I.; Lobova, S.V.; Panchenko, N.B.; Kostyleva, G. Specifics of the fuel and energy complex regulation: Seeking new opportunities for Russian and international aspects. Int. J. Energy Econ. Policy 2018, 8, 169–177. [Google Scholar]
- Gusev, A. New cyberattacks vectors of Russian critical infrastructure enterprises: Domestic private banking sector view within AI protection methods. Procedia Comput. Sci. 2020, 169, 314–319. [Google Scholar] [CrossRef]
- Chukreyev, M. Power price in the conditions of market relations UES of Russia. E3S Web Conf. 2020, 216, 01047. [Google Scholar] [CrossRef]
- Kulachinskaya, A.; Akhmetova, I.G.; Kulkova, V.Y.; Ilyashenko, S.B. The Challenge of the Energy Sector of Russia during the 2020 COVID-19 Pandemic through the Example of the Republic of Tatarstan: Discussion on the Change of Open Innovation in the Energy Sector. J. Open Innov. Technol. Mark. Complex. 2020, 6, 60. [Google Scholar] [CrossRef]
- Pagliaro, M. Renewable energy in Russia: A critical perspective. Energy Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Chebotareva, G. Digital transformation of the energy sector: A case of Russia. E3S Web Conf. 2021, 250, 01001. [Google Scholar] [CrossRef]
- Thornbush, M.; Golubchikov, O. Smart energy cities: The evolution of the city-energy-sustainability nexus. Environ. Dev. 2021, 100626. [Google Scholar] [CrossRef]
- Surie, G. Creating the innovation ecosystem for renewable energy via social entrepreneurship: Insights from India. Technol. Forecast. Soc. Chang. 2017, 121, 184–195. [Google Scholar] [CrossRef]
- Bauknecht, D.; Funcke, S.; Vogel, M. Is small beautiful? A framework for assessing decentralised electricity systems. Renew. Sustain. Energy Rev. 2020, 118, 109543. [Google Scholar] [CrossRef]
- Voskresenskaya, E.; Vorona-Slivinskaya, L.; Achba, L. Development of public services in the energy field in the age of digital economy. E3S Web Conf. 2019, 110, 02031. [Google Scholar] [CrossRef]
- Berezin, A.; Sergi, B.S.; Gorodnova, N. Efficiency assessment of public-private partnership (PPP) projects: The case of Russia. Sustainability 2018, 10, 3713. [Google Scholar] [CrossRef] [Green Version]
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 | |
---|---|---|---|---|---|---|---|
Coal | 191,114 | 129,203 | 119,991 | 112,582 | 101,439 | 116,481 | 119,587 |
Natural gas | 367,391 | 316,635 | 319,007 | 349,669 | 383,544 | 364,253 | 413,707 |
Nuclear | 31,294 | 26,244 | 34,413 | 39,248 | 44,753 | 51,270 | 53,637 |
Hydro | 14,266 | 15,083 | 14,108 | 14,848 | 14,315 | 14,445 | 16,435 |
Wind and solar | 24 | 26 | 50 | 353 | 430 | 157 | 185 |
Biofuels and waste | 12,182 | 8537 | 6898 | 6916 | 6944 | 7663 | 8579 |
Oil | 263,778 | 142,718 | 126,112 | 129,198 | 139,080 | 139,365 | 148,281 |
2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|
Crude oil | 89.6 | 73.7 | 93.4 | 129.2 | 121.4 |
Petroleum products | 67.5 | 46.1 | 58.2 | 78.2 | 66.9 |
Gas (including LNG) | 46.4 | 34.2 | 41.9 | 54.4 | 49.6 |
Others | 12.7 | 12.2 | 18.5 | 25.2 | 24.6 |
2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|
Energy consumption, million toe | 940.7 | 950.2 | 953.1 | 985.1 | 962.3 |
Energy intensity, toe/thousand rubles | 0.0114 | 0.01147 | 0.0108 | 0.0107 | 0.00473 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strielkowski, W.; Sherstobitova, A.; Rovny, P.; Evteeva, T. Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review. Energies 2021, 14, 3164. https://doi.org/10.3390/en14113164
Strielkowski W, Sherstobitova A, Rovny P, Evteeva T. Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review. Energies. 2021; 14(11):3164. https://doi.org/10.3390/en14113164
Chicago/Turabian StyleStrielkowski, Wadim, Anna Sherstobitova, Patrik Rovny, and Tatiana Evteeva. 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review" Energies 14, no. 11: 3164. https://doi.org/10.3390/en14113164
APA StyleStrielkowski, W., Sherstobitova, A., Rovny, P., & Evteeva, T. (2021). Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review. Energies, 14(11), 3164. https://doi.org/10.3390/en14113164