Study on Annular Pressure Buildup in Offshore Heavy Oil Thermal Recovery Wells Considering Dissolved Gas Contained in Annuli
Abstract
:1. Introduction
2. Experiments
2.1. Experiment Preparation
2.2. Experimental Procedure
3. Experimental Results and Discussion
3.1. Experimental Results
3.2. Full-Liquid Model Analysis
3.3. Dissolved Gas Model Analysis
4. Sensitivity Analysis
4.1. Dissolved Gas Volume Fraction
4.2. Casing Deformation
5. Conclusions
- (1)
- In this paper, the radial full-size physical simulation experiment of APB was carried out and an annular pressure prediction model taking into account dissolved gas was proposed. The modified full-liquid model and the dissolved gas model were compared and analyzed based on the experimental data. The accuracy of the model was verified.
- (2)
- With the decrease of the dissolved gas volume fraction, the prediction results of the dissolved gas model are closer to those of the full-liquid model. When the volume fraction of dissolved gas is less than 0.1%, the prediction RMSE and final prediction error of each annulus between the full-liquid model and dissolved gas model will be both less than 2 MPa, which is acceptable for practical application.
- (3)
- Analysis results indicate that the dissolved gas does exist in the annulus, and by including it in the model one obtains greater prediction accuracy. Ignoring the existence of the dissolved gas will result in an overestimation of the pressure buildup and unnecessary economic loss. If the prediction process needs to be simplified, it is recommended that the full-liquid model should be used only when the dissolved gas volume fraction is less than 0.1%.
- (4)
- The casing deformation of each annulus cannot be ignored for the sake of annular pressure prediction. Ignoring the casing deformation will lead to an overestimation of the pressure in annulus A and an underestimation of the pressure in annulus C. According to the experiment, the casing deformation around annulus B has an offset effect. The rigid casing model could be used in annulus B in an environment similar to that of the experiment. Therefore, the rigid casing model should be used carefully based on the field temperature conditions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
annular pressure buildup (MPa) | |
annular fluid temperature increase (K) | |
isobaric thermal expansion coefficient of annular fluid (1/K) | |
isothermal compressibility of annular fluid (1/MPa) | |
volume of the annulus (m3) | |
volume change of the annulus (m3) | |
initial volume of the annular fluid (m3) | |
inflow and outflow volume of the annular fluid (m3) | |
annular fluid pressure (MPa) | |
annular fluid volume (m3) | |
annular fluid temperature (K) | |
annular fluid temperature (°C), | |
final annular fluid temperature (K) | |
final annular fluid temperature (°C), | |
final annular fluid temperature (K) | |
initial annular fluid temperature (°C), | |
final annular pressure (MPa) | |
initial annular pressure (MPa) | |
final annular fluid volume (m3) | |
initial annular fluid volume (m3) | |
intermediate annular fluid volume (m3) | |
casing deformation caused by thermal expansion (m) | |
casing deformation caused by internal and external pressure (m) | |
Poisson’s ratio | |
linear expansion coefficient of the casing (1/K) | |
radius of calculation position (m) | |
inner radius of the casing (m) | |
external radius of the casing (m) | |
elastic modulus (MPa) | |
external pressure of the casing (MPa) | |
inner pressure of the casing (MPa) | |
nitrogen solubility (μmol/kg) | |
solubility coefficient, | |
solubility coefficient, | |
solubility coefficient, | |
solubility coefficient, | |
Gas constant (J∙mol−1∙K−1), J∙mol−1∙K−1 | |
gas molar volume (m3) | |
reduced pressure, | |
reduced temperature, | |
critical pressure (MPa), MPa for nitrogen | |
critical temperature (K), K for nitrogen | |
attraction parameter of EOS, | |
attraction parameter of EOS, | |
co-volume parameter of EOS, | |
formula parameters, | |
Pitzer’s acentric factor, for nitrogen | |
compression factor |
References
- Amaechi, C.V.; Gillett, N.; Odijie, A.C.; Hou, X.; Ye, J. Composite risers for deep waters using a numerical modelling approach. Compos. Struct. 2019, 210, 486–499. [Google Scholar] [CrossRef] [Green Version]
- Amaechi, C.V.; Wang, F.; Hou, X.; Ye, J. Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy. Ocean. Eng. 2019, 171, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Amaechi, C.V.; Ye, J.; Hou, X.; Wang, F. Sensitivity Studies on Offshore Submarine Hoses on CALM Buoy with Comparisons for Chinese-Lantern and Lazy-S Configuration. In Proceedings of the 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, Scotland, UK, 9–14 June 2019. OMAE2019-96755. [Google Scholar]
- Amaechi, C.V.; Ye, J. A numerical modeling approach of composite risers for deep waters. In Proceedings of the 20th International Conference on Composite Structures (ICCS20), Paris, France, 4–7 September 2017. [Google Scholar]
- Sukumar, S.; Weijermars, R.; Alves, I.; Noynaert, S. Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs during a Zipper Fracturing Operation. Energies 2019, 12, 1469. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Chen, P. A review of the evaluation methods and control technologies for trapped annular pressure in deepwater oil and gas wells. J. Nat. Gas. Sci. Eng. 2017, 37, 85–105. [Google Scholar] [CrossRef]
- Oudeman, P.; Kerem, M. Transient behavior of annular pressure build-up in HP/HT wells. SPE Drill. Complet. 2006, 21, 234–241. [Google Scholar] [CrossRef]
- Yang, J.; Tang, H.X.; Liu, Z.L.; Yang, L.P.; Huang, X.L.; Yan, D.; Tian, R.R. Prediction model of casing annulus pressure for deepwater well drilling and completion operation. Pet. Explor. Dev. 2013, 40, 661–664. [Google Scholar] [CrossRef]
- Pattillo, P.D.; Cocales, B.W.; Morey, S.C. Analysis of an annular pressure buildup failure during drill ahead. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004. SPE-89775-MS. [Google Scholar] [CrossRef]
- Sathuvali, U.B.; Pilko, R.M.; Gonzalez, R.A.; Pai, R.M.; Sachdeva, P.; Suryanarayana, P.V. Design and performance of annular pressure build-up APB mitigation techniques. In Proceedings of the IADC/SPE Drilling Conference and Exhibition, Fort Worth, TX, USA, 1–3 March 2016. SPE-178886-MS. [Google Scholar]
- Hasan, A.R.; Izgec, B.; Kabir, C.S. Sustaining production by managing annular pressure buildup. SPE Drill. Complet. 2010, 25, 195–203. [Google Scholar] [CrossRef]
- Bellarby, J.; Kofoed, S.S.; Marketz, F. Annular pressure build-up analysis and methodology with examples from multifrac horizontal wells and HPHT reservoirs. In Proceedings of the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 5–7 March 2013. SPE-163557-MS. [Google Scholar] [CrossRef]
- Foolad, Y.; Bizhani, M.; Frigaard, I.A. A comparative study of laminar-turbulent displacement in an eccentric annulus under imposed flow rate and imposed pressure drop conditions. Energies 2021, 14, 1654. [Google Scholar] [CrossRef]
- Foroushan, H.K.; Lund, B.; Ytrehus, J.D.; Saasen, A. Cement Placement: An Overview of Fluid Displacement Techniques and Modelling. Energies 2021, 14, 573. [Google Scholar] [CrossRef]
- Tao, C.; Rosenbaum, E.; Kutchko, B.G.; Massoudi, M. A Brief Review of Gas Migration in Oilwell Cement Slurries. Energies 2021, 14, 2369. [Google Scholar] [CrossRef]
- Tao, C.; Kutchko, B.G.; Rosenbaum, E.; Massoudi, M. A review of rheological modeling of cement slurry in oil well applications. Energies 2020, 13, 570. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.R.; Kabir, C.S. Wellbore heat-transfer modeling and applications. J. Nat. Gas. Sci. Eng. 2012, 86–87, 127–136. [Google Scholar] [CrossRef]
- Oudeman, P.; Bacarezza, L.J. Field trial results of annular pressure behavior in a HP/HT well. SPE Drill. Complet. 1995, 10, 84–88. [Google Scholar] [CrossRef]
- Ferreira, M.V.D.; Santos, A.R.; Vanzan, V. Thermally insulated tubing application to prevent annular pressure buildup in Brazil Offshore fields. In Proceedings of the SPE Deepwater Drilling and Completions Conference, Galveston, TX, USA, 20–21 June 2012. SPE-151044-MS. [Google Scholar] [CrossRef]
- Sun, T.F.; Zhang, X.Q.; Liu, S.J.; Cao, Y.F.; Xie, R.J. Annular Pressure Buildup Calculation When Annulus Contains Gas. Chem. Tech. Fuels Oils 2018, 54, 484–492. [Google Scholar] [CrossRef]
- Azzola, J.H.; Tselepidakis, D.P.; Pattillo, P.D.; Richey, J.F.; Tinker, S.J.; Miller, R.A.; Segreto, S.J. Application of vacuum insulated tubing to mitigate annular pressure buildup. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004. SPE-90232-MS. [Google Scholar] [CrossRef]
- Guan, Z.C.; Zhang, B.; Wang, Q.; Liu, Y.W.; Xu, Y.Q.; Zhang, Q. Design of thermal-insulated pipes applied in deepwater well to mitigate annular pressure build-up. Appl. Therm. Eng. 2016, 98, 129–136. [Google Scholar] [CrossRef]
- Zhang, B.; Guan, Z.C.; Hasan, A.R.; Lu, N.; Wang, Q.; Xu, Y.Q.; Zhang, Q.; Liu, Y.W. Development and design of new casing to mitigate trapped annular pressure caused by thermal expansion in oil and gas wells. Appl. Therm. Eng. 2017, 118, 292–298. [Google Scholar] [CrossRef]
- Liu, Z.C.; Samuel, R.; Gonzales, A.; Kang, Y.F. Modeling and simulation of annular pressure buildup (APB) mitigation using rupture disk. In Proceedings of the SPE Deepwater Drilling and Completions Conference, Galveston, TX, USA, 14–15 September 2016. SPE-180308-MS. [Google Scholar] [CrossRef]
- Bradford, D.W.; Fritchie, D.G.; Gibson, D.H.; Gosch, S.W.; Pattillo, P.D.; Sharp, J.W.; Taylor, C.E. Marlin failure analysis and redesign; part 1, description of failure. In Proceedings of the IADC/SPE Drilling Conference, Dallas, TX, USA, 26–28 February 2002. SPE-74528-MS. [Google Scholar] [CrossRef]
- Ellis, R.C.; Fritchie, D.G.; Gibson, D.H.; Gosch, S.W.; Pattillo, P.D. Marlin failure analysis and redesign; part 2, redesign. In Proceedings of the IADC/SPE Drilling Conference, Dallas, TX, USA, 26–28 February 2002. SPE-74529-MS. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Li, J.; Zeng, Y.J.; Ding, S.D.; Tao, Q. Optimization of the Annulus Nitrogen Injection Volume in Offshore Wells With Annular Pressure Buildup. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 23–26 April 2018. SPE-192443-MS. [Google Scholar] [CrossRef]
- Loder, T.; Evans, J.H.; Griffith, J.E. Prediction of and effective preventative solution for annular fluid pressure buildup on subsea completed wells-case study. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 5–8 October 2003. SPE-84270-MS. [Google Scholar] [CrossRef]
- Kan, C.B.; Yang, J.; Yu, X.C.; Wang, Y.B. A novel mitigation on deepwater annular pressure buildup: Unidirectional control strategy. J. Petrol. Sci. Eng. 2018, 162, 577–587. [Google Scholar] [CrossRef]
- Yin, F.; Gao, D.L. Improved calculation of multiple annuli pressure buildup in subsea HPHT wells. In Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference, Bangkok, Thailand, 25–27 August 2014. SPE-170553-MS. [Google Scholar] [CrossRef]
- Liu, J.G.; Fan, H.H.; Peng, Q.; Deng, S.; Kang, B.; Ren, W.Y. Research on the prediction model of annular pressure buildup in subsea wells. J. Nat. Gas. Sci. Eng. 2015, 27, 1677–1683. [Google Scholar] [CrossRef]
- Zhang, B.; Guan, Z.; Zhang, Q. Prediction and analysis on annular pressure of deepwater well in the production stage. Acta Petrol. Sin. 2015, 32, 1012–1017. [Google Scholar]
- Gao, D.L.; Feng, Q.; Zheng, H.K. On a method of prediction of the annular pressure buildup in deepwater wells for oil & gas. CMES-Comp. Model. Eng. Sci. 2012, 89, 1–15. [Google Scholar]
- Wang, L.S.; Gao, B.K.; Gao, L.; Hu, T.X. Prediction of annular pressure caused by thermal expansion by considering the variability of fluid properties. Appl. Therm. Eng. 2018, 141, 234–244. [Google Scholar] [CrossRef]
- Wang, L.S.; Gao, B.K.; Gao, L.; Hu, T.X. Design and application of foamed spacer to mitigate annular pressure induced by fluid thermal expansion. Appl. Therm. Eng. 2020, 165, 114524. [Google Scholar] [CrossRef]
- Vargo, R.F., Jr.; Payne, M.; Faul, R.; LeBlanc, J.; Griffith, J.E. Practical and successful prevention of annular pressure buildup on the Marlin project. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, September 29–October 2 2002. SPE-77473-MS. [Google Scholar] [CrossRef]
- Zhang, B.; Guan, Z.C.; Sheng, Y.N.; Wang, Q.; Xu, C.B. Impact of wellbore fluid properties on trapped annular pressure in deepwater wells. Pet. Explor. Dev. 2016, 43, 869–875. [Google Scholar] [CrossRef]
- Kulkarni, S.D.; Vyas, A.; Gupta, H. Evaluating precision of fluid/casing design for annular pressure build-up APB application using machine-learning tools. In Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019. SPE-196179-MS. [Google Scholar] [CrossRef]
- Santos, H.L.; Rocha, J.S.; Ferreira, M.V.; Lima, V.; Souza, C.O.; Borges, A.; Silva, E.C. APB mitigation techniques and design procedure. In Proceedings of the OTC Brasil, Rio de Janeiro, Brazil, 27–29 October 2015. OTC-26294-MS. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, J.; Liu, Z.L.; Luo, J.F.; Huang, X.L.; Zhou, R.X.; Song, Y. Mechanism of pressure management by injecting nitrogen in casing annulus of deepwater wells. Pet. Explor. Dev. 2015, 42, 422–426. [Google Scholar] [CrossRef]
- Williamson, R.; Sanders, W.; Jakabosky, T.; Serio, M.; Griffith, J.E. Control of contained-annulus fluid pressure buildup. In Proceedings of the SPE/IADC Drilling Conference, Amsterdam, Netherlands, 19–21 February 2003. SPE-79875-MS. [Google Scholar] [CrossRef]
- Yang, G.T. Introduction to Elasticity and Plasticity; Tsinghua University Press: Beijing, China, 2004. [Google Scholar]
- Colt, J. Computation of Dissolved Gas Concentration in Water as Functions of Temperature, Salinity and Pressure; Elsevier: Waltham, MA, USA, 2012. [Google Scholar]
- Danesh, A. PVT and Phase Behaviour of Petroleum Reservoir Fluids; Elsevier Science B.V.: Amsterdam, The Netherlands, 1998. [Google Scholar]
Grade | Length (mm) | The Outer Diameter (mm) | Thickness (mm) | Modulus of Elasticity (MPa) | Poisson’s Ratio | Coefficient of Thermal Expansion |
---|---|---|---|---|---|---|
P110 | 467 | 88.9 | 6.50 | 210,000 | 0.3 | 0.000012 |
P110 | 467 | 139.7 | 6.20 | 210,000 | 0.3 | 0.000012 |
P110 | 467 | 244.5 | 13.85 | 210,000 | 0.3 | 0.000012 |
P110 | 467 | 339.7 | 12.20 | 210,000 | 0.3 | 0.000012 |
T-Tubing Fluid (°C) | P-Tubing Fluid (MPa) | T-A Annulus (°C) | P-A Annulus (MPa) | T-B Annulus (°C) | P-B Annulus (MPa) | T-C Annulus (°C) | P-C Annulus (MPa) |
---|---|---|---|---|---|---|---|
160 | 29.919 | 98 | 35.466 | 73 | 16.410 | 53 | 1.556 |
158 | 30.134 | 96 | 33.881 | 71 | 14.846 | 52 | 1.021 |
158 | 30.279 | 96 | 33.029 | 70 | 14.113 | 52 | 0.888 |
156 | 25.072 | 95 | 31.157 | 69 | 13.036 | 51 | 0.784 |
152 | 25.166 | 92 | 28.707 | 67 | 11.407 | 51 | 0.655 |
151 | 25.375 | 90 | 27.029 | 66 | 10.447 | 50 | 0.649 |
148 | 20.973 | 88 | 23.629 | 65 | 9.078 | 50 | 0.531 |
136 | 21.064 | 83 | 18.207 | 64 | 7.617 | 49 | 0.448 |
130 | 17.095 | 82 | 17.034 | 64 | 7.248 | 49 | 0.421 |
130 | 16.149 | 81 | 16.297 | 63 | 6.819 | 49 | 0.390 |
131 | 15.970 | 81 | 16.041 | 62 | 6.199 | 48 | 0.353 |
131 | 15.167 | 81 | 15.339 | 62 | 5.741 | 48 | 0.335 |
129 | 14.177 | 79 | 14.322 | 61 | 5.077 | 48 | 0.314 |
129 | 12.228 | 78 | 12.462 | 60 | 4.066 | 47 | 0.289 |
125 | 10.851 | 76 | 11.158 | 59 | 3.475 | 47 | 0.279 |
123 | 8.244 | 74 | 8.918 | 58 | 2.711 | 47 | 0.266 |
114 | 6.423 | 71 | 5.204 | 57 | 1.942 | 47 | 0.256 |
110 | 3.959 | 70 | 4.286 | 57 | 1.777 | 46 | 0.251 |
110 | 3.910 | 70 | 4.029 | 57 | 1.614 | 46 | 0.246 |
110 | 2.908 | 69 | 3.602 | 56 | 1.385 | 46 | 0.240 |
109 | 2.900 | 69 | 3.388 | 56 | 1.266 | 46 | 0.237 |
109 | 2.928 | 69 | 3.108 | 56 | 1.115 | 45 | 0.232 |
108 | 3.085 | 68 | 2.715 | 55 | 0.922 | 45 | 0.226 |
107 | 1.909 | 68 | 2.419 | 55 | 0.831 | 45 | 0.223 |
107 | 1.983 | 67 | 2.114 | 54 | 0.768 | 45 | 0.220 |
106 | 0.954 | 67 | 1.620 | 53 | 0.710 | 44 | 0.215 |
106 | 0.975 | 67 | 1.375 | 53 | 0.651 | 44 | 0.212 |
105 | 0.622 | 65 | 1.021 | 52 | 0.550 | 44 | 0.208 |
104 | 0.546 | 64 | 0.689 | 52 | 0.436 | 44 | 0.204 |
102 | 0.451 | 64 | 0.609 | 52 | 0.430 | 44 | 0.203 |
100 | 0.310 | 62 | 0.507 | 51 | 0.338 | 43 | 0.201 |
a | −1.337 × 10−5 | 4.943 × 10−4 |
b | 1.200 × 10−5 | −2.335 × 10−6 |
c | 1.908 × 10−6 | −1.187 × 10−6 |
d | −6.343 × 10−8 | 2.548 × 10−8 |
e | −3.883 × 10−8 | 7.989 × 10−9 |
f | 2.036 × 10−10 | −2.670 × 10−11 |
g | 6.804 × 10−11 | −1.083 × 10−10 |
Fitting R2 | 0.9995 | 0.9757 |
Annulus | RMSE (MPa) | Final Prediction Error (MPa) |
---|---|---|
A | 5.043 | 7.433 |
B | 5.291 | 8.524 |
C | 3.683 | 6.786 |
Annulus | Initial Temperature (°C) | Initial Pressure (MPa) | Dissolved Gas Volume Fraction under Initial Condition |
---|---|---|---|
A | 62 | 0.507 | 0.228% |
B | 51 | 0.338 | 0.331% |
C | 43 | 0.201 | 0.543% |
Annulus | RMSE (MPa) | Final Prediction Error (MPa) |
---|---|---|
A | 0.699 | 1.913 |
B | 0.388 | 1.313 |
C | 0.135 | 0.372 |
Annulus A | Annulus B | Annulus C | ||
---|---|---|---|---|
0.1% DGVF | RMSE (MPa) | 1.732 | 1.858 | 1.200 |
Final prediction error (MPa) | 1.759 | 1.920 | 1.359 | |
0.2% DGVF | RMSE (MPa) | 3.599 | 3.592 | 2.155 |
Final prediction error (MPa) | 3.693 | 4.273 | 2.761 | |
0.3% DGVF | RMSE (MPa) | 5.312 | 5.064 | 2.870 |
Final prediction error (MPa) | 5.770 | 6.049 | 4.077 | |
0.4% DGVF | RMSE (MPa) | 6.811 | 6.305 | 3.371 |
Final prediction error (MPa) | 7.211 | 7.753 | 5.346 | |
0.5% DGVF | RMSE (MPa) | 8.219 | 7.439 | 3.691 |
Final prediction error (MPa) | 10.214 | 10.318 | 6.600 |
Annulus | RMSE (MPa) | Final Prediction Error (MPa) |
---|---|---|
A | 5.299 | 11.394 |
B | 0.915 | 3.365 |
C | 0.169 | −0.714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, H.; Li, J.; Chen, A.; Liu, J.; Sun, T.; Lin, C. Study on Annular Pressure Buildup in Offshore Heavy Oil Thermal Recovery Wells Considering Dissolved Gas Contained in Annuli. Energies 2021, 14, 3213. https://doi.org/10.3390/en14113213
Wang H, Zhang H, Li J, Chen A, Liu J, Sun T, Lin C. Study on Annular Pressure Buildup in Offshore Heavy Oil Thermal Recovery Wells Considering Dissolved Gas Contained in Annuli. Energies. 2021; 14(11):3213. https://doi.org/10.3390/en14113213
Chicago/Turabian StyleWang, Hao, Hui Zhang, Jun Li, Anming Chen, Jun Liu, Tengfei Sun, and Cong Lin. 2021. "Study on Annular Pressure Buildup in Offshore Heavy Oil Thermal Recovery Wells Considering Dissolved Gas Contained in Annuli" Energies 14, no. 11: 3213. https://doi.org/10.3390/en14113213
APA StyleWang, H., Zhang, H., Li, J., Chen, A., Liu, J., Sun, T., & Lin, C. (2021). Study on Annular Pressure Buildup in Offshore Heavy Oil Thermal Recovery Wells Considering Dissolved Gas Contained in Annuli. Energies, 14(11), 3213. https://doi.org/10.3390/en14113213