Particulate Matter Reduction in Residual Biomass Combustion
Abstract
:1. Introduction
2. Theory
2.1. Biomass Combustion
2.2. PM Formation in Biomass Combustion
3. Experimental Methodology
3.1. Furnace Design
- Baffle(s) that can be installed/removed in the freeboard to modify the gas residence time.
- Adjustable primary air flowrates.
- Adjustable level of air pre-heating for primary air.
- Multiple on-line PM sampling points located at 100 cm, 145 cm, 175 cm, and 325 cm (at the chimney) from the ash pit.
3.2. Experimental Design
- Gas residence time (furnace with and without baffles installed)
- Air preheating temperature (using LPG fueled air preheater)
- Different stoichiometric condition (by varying excess air level)
- Biomass sizes
- Biomass distribution on top of the grate
3.3. Biomass Fuel
3.4. Characterization Method
3.4.1. Gas Composition
3.4.2. PM Concentration
3.4.3. Temperature Measurement Using the Two-Thermocouple Method
4. Simulation Methodology
4.1. Global Mass Balance Analysis
4.2. CFD Simulations
4.2.1. Simulation of Combustion in the Furnace
4.2.2. Discrete Particle Model (DPM) Model
4.3. PM Reduction Kinetics
5. Results and Discussions
5.1. Measurement Accuracy and Simulation Validation
5.1.1. PM Morphology
5.1.2. Accuracy of the PM Sensor
5.1.3. Sensitivity Analysis of PM Measurement
5.1.4. Mass and Heat Balance Analysis
5.1.5. Steady State CFD Analysis
5.2. Analysis of Experiment Results
5.2.1. Influence of Residence Time
5.2.2. Influence of Air Pre-Heating
5.2.3. Influence of the Air/Fuel Ratio
5.3. Kinetic Study of PM10 Reduction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFD | Computational fluid dynamic |
EA | Excess air |
Exp | Experiment |
PA | Primary air |
SSE | Sum of squares error |
STDEV | Standard deviation |
Latin letters | |
C | Concentration [mg/m3] |
EA | Activation energy [kJ/mol] |
h | Convective heat transfer coefficient [W/(m2 K)] |
k | Kinetic rate [1/s] |
PM10 | Particulate matter with size 10 μm |
PM2.5 | Particulate matter with size 2.5 μm |
t | Time [s] |
T | Temperature [°C] |
y+ | Non-dimensional wall distance [-] |
y | Mole fraction [-] |
Greek letters | |
ε | Emissivity factor [-] |
σ | Stefan-Boltzmann constant [W/(m2 K4)] |
Subscript | |
∞ | Surrounding condition |
b | Thermocouple bead |
calc | Calculated value |
exp | Experimental value |
g | Gas |
l | Large thermocouple |
ref | Reference |
s | Small thermocouple |
References
- Wang, X.; Hu, Z.; Adeosun, A.; Liu, B.; Ruan, R.; Li, S.; Tan, H. Particulate matter emission and K/S/Cl transformation during biomass combustion in an entrained flow reactor. J. Energy Inst. 2018, 91, 835–844. [Google Scholar] [CrossRef]
- Anca-Couce, A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 2016, 53, 41–79. [Google Scholar] [CrossRef]
- Warnatz, J.; Mass, U.; Dibble, R.W. Combustion: Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation, 4th ed.; Springer: Berlin, Germany, 1999; ISBN 9783540259923. [Google Scholar]
- WHO. Ambient Air Pollution. Available online: https://www.who.int/gho/phe/outdoor_air_pollution/en/#:~:text=Particulate matter pollution is an,countries disproportionately experience this burden.&text=In 2016%2C indoor and outdoor,one in nine deaths globally (accessed on 12 August 2020).
- Raza, M.; Chen, L.; Leach, F.; Ding, S. A review of particulate number (PN) emissions from gasoline direct injection (gdi) engines and their control techniques. Energies 2018, 11, 1417. [Google Scholar] [CrossRef] [Green Version]
- Sciortino, D.D.; Bonatesta, F.; Hopkins, E.; Yang, C.; Morrey, D. A combined experimental and computational fluid dynamics investigation of particulate matter emissions from a wall-guided gasoline direct injection engine. Energies 2017, 10, 1408. [Google Scholar] [CrossRef]
- Luo, M.; El-Faroug, M.O.; Yan, F.; Wang, Y. Particulate matter and gaseous emission of hydrous ethanol gasoline blends fuel in a port injection gasoline engine. Energies 2017, 10, 1263. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Stevanovic, S.; Zare, A.; Dwivedi, G.; Van, T.C.; Davidson, M.; Rainey, T.; Brown, R.J.; Ristovski, Z.D. An overview of the influence of biodiesel, alcohols, and various oxygenated additives on the particulate matter emissions from diesel engines. Energies 2019, 12, 1987. [Google Scholar] [CrossRef] [Green Version]
- Viskup, R.; Wolf, C.; Baumgartner, W. Qualitative and quantitative characterisation of major elements in particulate matter from in-use diesel engine passenger vehicles by LIBS. Energies 2020, 13, 368. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Du, Q.; Gao, J.; Wu, S. Contribution of minerals in different occurrence forms to PM10 emissions during the combustion of pulverized zhundong coal. Energies 2019, 12, 3629. [Google Scholar] [CrossRef] [Green Version]
- McConnell, J.; Sutherland, J.C. Assessment of various tar and soot treatment methods and a priori analysis of the steady laminar flamelet model for use in coal combustion simulation. Fuel 2020, 265, 116775. [Google Scholar] [CrossRef]
- Wang, W.; Wen, C.; Liu, T.; Li, C.; Chen, L.; Wu, J.; Shao, Y.; Liu, E. Effects of various occurrence modes of inorganic components on the emissions of PM10 during torrefied biomass combustion under air and oxy-fuel conditions. Appl. Energy 2020, 259, 114153. [Google Scholar] [CrossRef]
- Final Report|The Contribution of Biomass Combustion to Ambient Fine Particle Concentrations in the United States|Research Project Database|Grantee Research Project|ORD|US EPA. Available online: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/104/report/F (accessed on 30 June 2020).
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
- Puxbaum, H.; Caseiro, A.; Sánchez-Ochoa, A.; Kasper-Giebl, A.; Claeys, M.; Gelencsér, A.; Legrand, M.; Preunkert, S.; Pio, C.A. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J. Geophys. Res. Atmos. 2007, 112, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nussbaumer, T. Combustion and co-combustion of biomass: Fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 2003, 17, 1510–1521. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, X.; Zhang, L.; Yang, S.; Ruan, R.; Bai, S.; Zhu, Y.; Wang, L.; Mikulčić, H.; Tan, H. Emission characteristics of particulate matters from a 30 MW biomass-fired power plant in China. Renew. Energy 2020, 155, 225–236. [Google Scholar] [CrossRef]
- Pagels, J.; Strand, M.; Rissler, J.; Szpila, A.; Gudmundsson, A.; Bohgard, M.; Lillieblad, L.; Sanati, M.; Swietlicki, E. Characteristics of aerosol particles formed during grate combustion of moist forest residue. J. Aerosol Sci. 2003, 34, 1043–1059. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.A.; Livbjerg, H. A field study of submicron particles from the combustion of straw. Aerosol Sci. Technol. 1996, 25, 185–199. [Google Scholar] [CrossRef]
- Wiinikka, H.; Gebart, R.; Boman, C.; Boström, D.; Öhman, M. Influence of fuel ash composition on high temperature aerosol formation in fixed bed combustion of woody biomass pellets. Fuel 2007, 86, 181–193. [Google Scholar] [CrossRef]
- Zeuthen, J.H.; Jensen, P.A.; Jensen, J.P.; Livbjerg, H. Aerosol formation during the combustion of straw with addition of sorbents. Energy Fuels 2007, 21, 699–709. [Google Scholar] [CrossRef]
- Regueiro, A.; Patiño, D.; Porteiro, J.; Granada, E.; Míguez, J.L. Effect of air staging ratios on the burning rate and emissions in an underfeed fixed-bed biomass combustor. Energies 2016, 9, 940. [Google Scholar] [CrossRef] [Green Version]
- Patiño, D.; Pérez-Orozco, R.; Porteiro, J.; Lapuerta, M. Characterization of biomass PM emissions using thermophoretic sampling: Composition and morphological description of the carbonaceous residues. J. Aerosol Sci. 2019, 127, 49–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhou, Y.; Dong, R. The influences of various testing conditions on the Evaluation of household biomass pellet fuel combustion. Energies 2018, 11, 1131. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhu, Y.; Cheng, W.; Sang, H.; Yang, H.; Chen, H. Characteristics of Particulate Matter Emitted from Agricultural Biomass Combustion. Energy Fuels 2017, 31, 7493–7501. [Google Scholar] [CrossRef]
- Babcock & Wilcox Company. Steam: Its Generation and Use, 38th ed.; Babcock & Wilcox Company: Brooklyn, NY, USA, 1972. [Google Scholar]
- Soltani, S.; Andersson, R.; Andersson, B. The effect of exhaust gas composition on the kinetics of soot oxidation and diesel particulate filter regeneration. Fuel 2018, 220, 453–463. [Google Scholar] [CrossRef]
- Wang-Hansen, C.; Soltani, S.; Andersson, B. Kinetic analysis of O2-and NO2-based oxidation of synthetic soot. J. Phys. Chem. C 2013, 117, 522–531. [Google Scholar] [CrossRef]
- Kastrinaki, G.; Lorentzou, S.; Konstandopoulos, A.G. Soot oxidation kinetics of different ceria nanoparticle catalysts. Emiss. Control Sci. Technol. 2015, 1, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Tighe, C.J.; Twigg, M.V.; Hayhurst, A.N.; Dennis, J.S. The kinetics of oxidation of diesel soots and a carbon black (printex U) by O2 with reference to changes in both size and internal structure of the spherules during burnout. Carbon 2016, 107, 20–35. [Google Scholar] [CrossRef]
- Perraudin, E.; Budzinski, H.; Villenave, E. Kinetic study of the reactions of ozone with polycyclic aromatic hydrocarbons adsorbed on atmospheric model particles. J. Atmos. Chem. 2007, 56, 57–82. [Google Scholar] [CrossRef]
- Gómez, M.A.; Comesaña, R.; Feijoo, M.A.Á.; Eguía, P. Simulation of the effect of water temperature on domestic biomass boiler performance. Energies 2012, 5, 1044–1061. [Google Scholar] [CrossRef]
- Gómez, M.A.; Martín, R.; Collazo, J.; Porteiro, J. CFD steady model applied to a biomass boiler operating in air enrichment conditions. Energies 2018, 11, 2513. [Google Scholar] [CrossRef] [Green Version]
- Motyl, P.; Król, D.; Poskrobko, S.; Juszczak, M. Numerical modelling and experimental verification of the low-emission biomass combustion process in a domestic boiler with flue gas flow around the combustion chamber. Energies 2020, 13, 5837. [Google Scholar] [CrossRef]
- Morrone, B. Residual biomass resources: An invaluable reservoir of energy and matter. In Innovations in Sustainable Energy and Cleaner Environment; Gupta, A.K., De, A., Aggarwal, S.K., Kushari, A., Runchal, A., Eds.; Springer: Singapore, 2020; pp. 149–170. ISBN 978-981-13-9012-8. [Google Scholar]
- Nugraha, M.G.; Saptoadi, H.; Hidayat, M.; Andersson, B.; Andersson, R. Particle modelling in biomass combustion using orthogonal collocation. Appl. Energy 2019, 255, 113868. [Google Scholar] [CrossRef]
- Lu, H.; Robert, W.; Peirce, G.; Ripa, B.; Baxter, L.L. Comprehensive study of biomass particle combustion. Energy Fuels 2008, 22, 2826–2839. [Google Scholar] [CrossRef]
- Moilanen, A.; Saviharju, K.; Harju, T. Steam gasification reactivities of various fuel chars. Adv. Thermochem. Biomass Convers. 1993, 1, 131–141. [Google Scholar] [CrossRef]
- Yin, C.; Rosendahl, L.A.; Kær, S.K. Grate-firing of biomass for heat and power production. Prog. Energy Combust. Sci. 2008, 34, 725–754. [Google Scholar] [CrossRef]
- Tissari, J.; Lyyränen, J.; Hytönen, K.; Sippula, O.; Tapper, U.; Frey, A.; Saarnio, K.; Pennanen, A.S.; Hillamo, R.; Salonen, R.O.; et al. Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmos. Environ. 2008, 42, 7862–7873. [Google Scholar] [CrossRef]
- Deng, C.; Liaw, S.B.; Gao, X.; Wu, H. Differences in soot produced from rapid pyrolysis of xylan, cellulose and lignin under pulverized-fuel conditions. Fuel 2020, 265, 116991. [Google Scholar] [CrossRef]
- Koppejan, J.; van Loo, S.; van Loo, S. The Handbook of Biomass Combustion and Co-Firing; Routledge: Oxford, UK, 2012; ISBN 9781849773041. [Google Scholar]
- Coconut Production in Indonesia. Available online: www.tridge.com/intelligences/coconut/ID/production (accessed on 18 December 2018).
- Tsamba, A.J.; Yang, W.; Blasiak, W. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Process. Technol. 2006, 87, 523–530. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.; Gómez-Barea, A. Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 2011, 37, 611–630. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lee, M.K.; Chang, Y.M. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrolysis 2006, 76, 230–237. [Google Scholar] [CrossRef]
- Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Schwarz, A.D.; Meyer, J.; Dittler, A. Opportunities for low-cost particulate matter sensors in filter emission measurements. Chem. Eng. Technol. 2018, 41, 1826–1832. [Google Scholar] [CrossRef] [Green Version]
- Nova Fitness Co., Ltd. Laser PM2.5 Sensor Specification Product Model: SDS011, version: V1.3; Nova Fitness Co., Ltd.: Shandong, China, 2015; pp. 1–11. [Google Scholar]
- Masks and N95 Respirators|FDA. Available online: https://www.fda.gov/medical-devices/personal-protective-equipment-infection-control/masks-and-n95-respirators (accessed on 18 February 2020).
- 3M™ Particulate Respirator 8210, N95 160 EA/Case|3M United States. Available online: https://www.3m.com/3M/en_US/company-us/all-3m-products/~/3M-Particulate-Respirator-8210-N95-160-EA-Case/?N=5002385+3294780268&rt=rud (accessed on 12 February 2020).
- FEI Quanta 650 SEM. Available online: https://www.fei.com/products/sem/Quanta-SEM-for-Materials-Science/ (accessed on 20 March 2020).
- Brohez, S.; Delvosalle, C.; Marlair, G. A two-thermocouples probe for radiation corrections of measured temperatures in compartment fires. Fire Saf. J. 2004, 39, 399–411. [Google Scholar] [CrossRef]
- Williams, A.; Jones, J.M.; Ma, L.; Pourkashanian, M. Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. Sci. 2012, 38, 113–137. [Google Scholar] [CrossRef]
- Andersson, B.; Andersson, R.; Håkansson, L.; Mortensen, M.; Sudiyo, R.; van Wachem, B. Computational Fluid Dynamics for Engineers; Cambridge University Press: Cambridge, UK, 2011; ISBN 9781107018952. [Google Scholar]
- Kantová, N.Č.; Sładek, S.; Jandačka, J.; Čaja, A.; Nosek, R. Simulation of biomass combustion with modified flue gas tract. Appl. Sci. 2021, 11, 1278. [Google Scholar] [CrossRef]
- Farokhi, M.; Birouk, M. Application of eddy dissipation concept for modeling biomass combustion, part 2: Gas-phase combustion modeling of a small-scale fixed bed furnace. Energy Fuels 2016, 30, 10800–10808. [Google Scholar] [CrossRef]
- Modest, M.F. Radiative Heat Transfer, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 9780125031639. [Google Scholar]
- Johansson, R.; Leckner, B.; Andersson, K.; Johnsson, F. Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model. Combust. Flame 2011, 158, 893–901. [Google Scholar] [CrossRef]
- Yu, H.; Liu, F.; Chen, Y.; Liu, Y.; Zhang, Z. The influence of baffle on furnace heat transfer in municipal waste incinerator. In Proceedings of the 2011 International Conference on Materials for Renewable Energy & Environment, Piscataway, NJ, USA, 2011, 20–22 May; Volume 2, pp. 2044–2048. [CrossRef]
- Chalermsinsuwan, B.; Samruamphianskun, T.; Piumsomboon, P. Effect of operating parameters inside circulating fluidized bed reactor riser with ring baffles using CFD simulation and experimental design analysis. Chem. Eng. Res. Des. 2014, 92, 2479–2492. [Google Scholar] [CrossRef]
- Stepanov, B.L.; Pešenjanski, I.K.; Spasojević, M.D. Scandinavian baffle boiler design revisited. Therm. Sci. 2015, 19, 305–316. [Google Scholar] [CrossRef]
- Josephson, A.J.; Linn, R.R.; Lignell, D.O. Modeling soot formation from solid complex fuels. Combust. Flame 2018, 196, 265–283. [Google Scholar] [CrossRef]
- Stanmore, B.R.; Brilhac, J.F.; Gilot, P. The oxidation of soot: A review of experiments, mechanisms and models. Carbon 2001, 39, 2247–2268. [Google Scholar] [CrossRef]
Experiment ID | % Excess Air | Air Temperature (°C) | Baffle | Number of Repeated Experiments | Total Number of Measurement Data |
---|---|---|---|---|---|
Exp 1 | 90 | 30 | No | 5 | 35 |
Exp 2 | 90 | 70 | No | 3 | 22 |
Exp 3 | 80 | 30 | No | 2 | 12 |
Exp 4 | 90 | 30 | Yes | 2 | 14 |
Exp 5 | 90 | 75 | Yes | 2 | 14 |
Experiment ID | Biomass Size (cm) | Biomass Distribution | Number of Repeated Experiments | Total Number of Measurement Data |
---|---|---|---|---|
Exp 6 | 4 | Uniform | 1 | 10 |
Exp 7 | 7 | Uniform | 1 | 8 |
Exp 8 | 5–10 | Centered | 1 | 5 |
Ultimate Analysis (%Mass) | Proximate Analysis (%Mass) | ||||||
---|---|---|---|---|---|---|---|
Carbon | Hydrogen | Oxygen | Nitrogen | Volatile | Ash | Fixed Carbon | Moisture |
47.5 | 6.23 | 45.47 | 0.11 | 72.4 | 0.6 | 19.4 | 7.6 |
Experiment ID | % Mole CO2 | 100 cm (°C) | 115 cm (°C) | Thermocouples Average (°C) | Chimney (°C) | Wall (°C) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exp | CFD | Exp | CFD | Exp | CFD | Exp | CFD | Exp | CFD | Exp | CFD | |||||||
Exp 1 | 9.59 | ±0.35 | 10.2 | 763 | ±2 | 780 | 775 | ±8 | 767 | 772 | ±7 | 771 | 819 | ±9 | 813 | 733 | ±5 | 732 |
Exp 2 | 9.95 | ±0.77 | 10.2 | 823 | ±10 | 812 | 835 | ±15 | 796 | 828 | ±11 | 800 | 854 | ±31 | 833 | 761 | ±7 | 763 |
Exp 3 | 10.5 | ±0.4 | 10.6 | 800 | ±10 | 805 | 789 | ±7 | 792 | 795 | ±8 | 796 | 846 | ±12 | 828 | 789 | ±3 | 759 |
Exp 4 | 10.1 | ±0.78 | 10.2 | 835 | ±26 | 879 | 818 | ±25 | 853 | 810 | ±25 | 847 | 770 | ±7 | 759 | 764 | ±5 | 797 |
Exp 5 | 9.78 | ±0.43 | 10.2 | 825 | ±30 | 908 | 842 | ±19 | 877 | 833 | ±24 | 871 | 801 | ±4 | 783 | 764 | ±4 | 823 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugraha, M.G.; Saptoadi, H.; Hidayat, M.; Andersson, B.; Andersson, R. Particulate Matter Reduction in Residual Biomass Combustion. Energies 2021, 14, 3341. https://doi.org/10.3390/en14113341
Nugraha MG, Saptoadi H, Hidayat M, Andersson B, Andersson R. Particulate Matter Reduction in Residual Biomass Combustion. Energies. 2021; 14(11):3341. https://doi.org/10.3390/en14113341
Chicago/Turabian StyleNugraha, Maulana G., Harwin Saptoadi, Muslikhin Hidayat, Bengt Andersson, and Ronnie Andersson. 2021. "Particulate Matter Reduction in Residual Biomass Combustion" Energies 14, no. 11: 3341. https://doi.org/10.3390/en14113341
APA StyleNugraha, M. G., Saptoadi, H., Hidayat, M., Andersson, B., & Andersson, R. (2021). Particulate Matter Reduction in Residual Biomass Combustion. Energies, 14(11), 3341. https://doi.org/10.3390/en14113341