Model of Flow Resistance Coefficient for a Fragment of a Porous Material Deposit with Skeletal Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Position
2.2. Scope and Research Methodology
3. Results and Discussion
4. Conclusions
- (a)
- fermentation of the substrate on porous beds using immobilization as a result, striving to obtain over 90% of methane in raw biogas.
- (b)
- extraction of methane from coal seams, both in pre-methane drainage as well as methane drainage carried out during and after operation.
- (c)
- in situ gasification of coal, in which the deposit is converted at the site of its deposition and its effect is the production of raw gas with high energy parameters.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Main symbols | ||
A | total cross-section of the flow channel | m2 |
K | permeability coefficient | m2 |
L | flow path length for the height of the porous bed | m |
P | pressure gauge | Pa |
Q | volumetric flow | m3/s |
Re | Reynolds number | |
T | thermometer | °C |
V | volume | m3 |
a | experimental constant | |
e | indicator porosity | |
d | diameterm | |
f | function | |
w | velocitym/s | |
ΔP | pressure drop, resistance flow | Pa |
Ψ | tortuosity | |
ε | porosity | |
η | fluid viscosity | Pa·s |
λ | coefficient of linear resistance | |
ξ | coefficient of flow resistance | |
π | Pi number | |
ρ | fluid density | kg/m3 |
χ | coefficient of tortuosity | |
ϑ | density of a solid body | kg/m3 |
Upper indices refer to | ||
* | own model | |
n | constant | |
Lower indices refer to | ||
B | acc. Brauer | |
B-K | acc. Blake-Kozeny | |
B-K-C | acc. Blake-Kozeny-Carman | |
B-P | acc. Burke-Plummer | |
E | acc. Ergun | |
T | acc. Tallmadge | |
W | acc. Windsperger | |
Z | acc. Zaworonkow | |
a | apparent | |
b | absolute | |
c | total | |
e | equivalent | |
ef | effective | |
g | gas | |
o | value calculated on the total deposit section—apparent value | |
r | nozzle | |
re | reference | |
s | skeleton | |
zm | measured | |
ε | value calculated relative to the porosity |
References
- Dyrka, I. Cechy Petrofizyczne Skał Łupkowych. Państwowa Służba Geologiczna o Gazie w Łupkach. Środowisko Występowania łupków Gazonośnych [Petrophysical Features of Shale Rocks. The National Geological Survey on Shale Gas. The Environment of Occurrence of Gas-Bearing Shales]; Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy: Warszawa, Poland, 2013; Volume 3, pp. 44–47. [Google Scholar]
- Caillet, G.; Judge, N.C.; Bramwell, N.P.; Meclani, L.; Green, M.; Ada, P. Overpressure and hydrocarbon trapping in the Chalk of the Norwegian Central Graben. Pet. Geosci. 1997, 3, 33–42. [Google Scholar] [CrossRef]
- Carter, K.M.; Harper, J.A.; Schmid, K.W.; Kostelnik, J. Unconventional natural gas resources in Pennsylvania: The backstory of the modern Marcellus Shale play. Environ. Geosci. 2011, 18, 217–257. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, S.; Chayyerjee, R.; Mohanty, S.P. Magnitude, mechanisms and prediction of abnormal pore pressure using well data in the Krishna Godavari Basin, East coast of India. AAPG Bull. 2016, 100, 1833–1855. [Google Scholar] [CrossRef]
- Dixit, N.C.; Hanks, C.L.; Wallace, W.K.; Ahmadi, M.; Awoleke, O. In Situ Stress Variations Associated with Regional Changes in Tectonic Setting, northeastern Brooks Range and eastern North Slope of Alaska. AAPG Bull. 2017, 48, 10107–10115. [Google Scholar] [CrossRef]
- Fan, C.Y.; Wang, Z.L.; Wang, A.G.; Fu, S.T.; Wang, L.Q.; Zhang, Y.S.; Kong, H.X.; Zhang, X. Identification and calculation of transfer overpressure in the northern Qaidam Basin, Northwest China. AAPG Bull. 2016, 100, 23–39. [Google Scholar] [CrossRef]
- Hill, D.G.; Nelson, C.R. Gas Productive Fractured Shales: An Overview and Update, Gas TIPS; Gas Research Institute: Chicago, IL, USA, 2000; Volume 6, pp. 4–18. [Google Scholar]
- Lampe, C.; Song, G.Q.; Cong, L.Z.; Mu, X. Fault control on hydrocarbon migration and accumulation in the Tertiary Dongying depression, Bohai Basin, China. AAPG Bull. 2012, 96, 983–1000. [Google Scholar] [CrossRef]
- Lee, M.K.; Williams, D.D. Paleohydrology of the Delaware Basin, Western Texas: Overpressure Development, Hydrocarbon Migration, and Ore Genesis. AAPG Bull. 2000, 84, 171–180. [Google Scholar]
- Liu, Y.F.; Qiu, N.S.; Xie, Z.Y.; Yao, Q.Y.; Zhu, C.Q. Overpressure compartments in the Central Paleo-Uplift, Sichuan Basin, southwest China. J. Nat. Gas Sci. Eng. 2016, 100, 867–888. [Google Scholar] [CrossRef]
- Osborne, M.J.; Swarbrick, R.E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bull. 1997, 81, 1023–1041. [Google Scholar]
- Tingay, M.R.P.; Hillis, R.R.; Swarbrick, R.E.; Morley, C.K.; Damit, A.R. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei. AAPG Bull. 2009, 93, 51–74. [Google Scholar] [CrossRef]
- Wu, J.; Liu, S.G.; Wang, G.Z.; Zhao, Y.H.; Sun, W.; Song, J.M.; Tan, Y.Y. Multi-Stage Hydrocarbon Accumulation and Formation Pressure Evolution in Sinian Dengying FormationCambrian Longwangmiao Formation, Gaoshiti-Moxi Structure, Sichuan Basin. J. Earth Sci. 2016, 27, 835–845. [Google Scholar] [CrossRef]
- Xu, Q.; Shi, W.; Xie, Y.; Wang, Z.; Li, X.; Tong, C. Identification of low-overpressure intervaland its implication to hydrocarbon migration: Casestudy in the Yanan sag of the Qiongdongnan Basin, South China Sea. PLoS ONE 2017, 12, e0183676. [Google Scholar] [CrossRef]
- Zeng, L. Microfracturing in the Upper Triassic Sichuan Basin Tight-gas Sandstones: Tectonic, Overpressure, and Diagenetic origins. AAPG Bull. 2010, 94, 1811–1825. [Google Scholar] [CrossRef]
- Amao, A.M. Mathematical Model for Darcy Forchheimer Flow with Applications to Well Performance Analysis. Master’s Thesis, Department of Petroleum Engineering, Texas Tech University, Lubbock, TX, USA, 2007. [Google Scholar]
- Bębenek, B.; Bębenek, H. Straty Energii w Przepływach Płynów [Energy Losses in Fluid Flows]; Wydawnictwo Politechniki Krakowskiej: Cracow, Poland, 1987. [Google Scholar]
- Błaszczyk, M. Badanie Procesów Migracji Substancji Ropopochodnych i ich Emulsji w Strukturach Porowatych. Praca Dokotorska [Research upon Processes of Migration of Petroleum Substances and Their Emulsions in Porous Structures]. Ph.D. Thesis, Politechnika Łódzka, Wydział Chemiczny, Łódź, Poland, 2014. [Google Scholar]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Kembłowski, Z.; Michałowski, S.; Strumiłło, C.; Zarzycki, R. Podstawy Teoretyczne Inżynierii Chemicznej i Procesowej [Theoretical Foundations of Chemical and Process Engineering]; WN-T: Warsaw, Poland, 1985. [Google Scholar]
- Orzechowski, Z.; Prywer, J.; Zarzycki, R. Mechanika Płynów w Inżynierii i Ochronie Środowiska [Fluid Mechanics in Engineering and Environmental Protection]; Wydawnictwo Naukowo-Techniczne: Warsaw, Poland, 2009. [Google Scholar]
- Piecuch, T. Równanie Darcy jako podstawa analizy teoretycznej szczególnych przypadków procesu filtracji [Darcy equation as the basis for theoretical analysis of specific cases of the filtration process.]. Rocz. Ochr. Środowiska 2009, 11, 299–319. [Google Scholar]
- Strzelecki, T.; Kostecki, S.; Żak, S. Modelowanie Przepływów Przez Ośrodki Porowate [Flow Modeling through Porous Media]; Dolnośląskie Wydawnictwo Edukacyjne: Wroclaw, Poland, 2008. [Google Scholar]
- Peszyńska, M.; Trykozko, A.; Sobieski, W. Forchheimer law in the computational and experimental of flow through porous media at porescale and mesoscale. GAKUTO International Series. Math. Sci. Appl. 2010, 32, 463–482. [Google Scholar]
- Brauer, H. Grundlagen der Einphasen-und Mehrphasenströmungen; Verlag Säuerländer: Frankfurt am Main, Germany, 1971. [Google Scholar]
- Kasieczka, W. Badanie Hydrodynamiki złoża Fluidalnego. Laboratorium. Kotły i Wytwornice Pary. Ćwiczenie nr K-07 [Investigation of Hydrodynamics of a Fluidized Bed. Lab. Boilers and Steam Generators. Exercise No. K-07]; Katedra Techniki Cieplnej i Chłodnictwa, Politechnika Łódzka: Łódz, Poland, 2011; pp. 1–18. [Google Scholar]
- Guimard, P.; McNerny, D.; Saw, E.; Yang, A. Pressure Drop for Flow through Packed Beds; Team 4; 06-363 Transport Process Laboratory; Carnegie Mellon University: Pittsburgh, PA, USA, 18 March 2004; pp. 1–14. [Google Scholar]
- Zaworonkow, M.N. Gidrawliczeskije Osnowy Skrubbernogo Processa i Tiepłopieredacza w Skrubberach; Izd. Sow. Nauka: Mscow, Russia, 1944. [Google Scholar]
- Windsperger, A. Abschätzung von spezifischer Oberfläche und Lückengrad bei biologischen Abluftreinigungsanlagen durch Vergleich von berechneten und experimentell erhaltenen Druckverlustwerten. Chem. Ing. Tech. 1991, 63, 80–81. [Google Scholar] [CrossRef]
- Di Sarlia, V.; Di Benedettob, A. Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter. Chem. Eng. Sci. 2015, 137, 69–78. [Google Scholar] [CrossRef]
- Cybulski, A.; Moulijn, J.A. Monoliths in heterogeneous catalysis. J. Catal. Rev. Sci. Eng. 1994, 36, 179. [Google Scholar] [CrossRef]
- Williams, J.L. Monolith structures, materials, properties and uses. Catal. Today 2001, 69, 3. [Google Scholar] [CrossRef]
- Wiatowski, M.; Stańczyk, K.; Świądrowski, J.; Kapusta, K.; Cybulski, K.; Krause, E.; Grabowski, J.; Rogut, J.; Howaniec, N.; Smoliński, A. Semi-technical underground coal gasification (UCG) using the shaft method in Experimental Mine “Barbara”. Fuel 2012, 99, 170–179. [Google Scholar] [CrossRef]
- Stańczyk, K.; Kapusta, K.; Wiatowski, M.; Świądrowski, J.; Smoliński, A.; Rogut, J.; Kotyrba, A. Experimental simulation of hard coal underground gasification for hydrogen production. Fuel 2012, 91, 40–50. [Google Scholar] [CrossRef]
- Peszyńska, M.; Trykozko, A. Pore-to-Core simulations of flow with large velocities using continuum models and imaging data. Comput. Geosci. 2013, 17, 623–645. [Google Scholar] [CrossRef]
- Bear, J.; Cheng, A. Modeling Groundwater Flow and Contaminant Transport; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
Autor | Model Equation | Criteria Number | ||
---|---|---|---|---|
Ergun [19] | (5) | (6) | ||
Brauer [25] | (7) | |||
Tallmadge [26] | (8) | |||
Burke-Plummer [27] | (9) | |||
Blake-Kozeny [27] | (10) | (11) | ||
Blake-Kozeny-Carman [20] | (12) | |||
Żaworonkow [28] | (13) | (14) | ||
Windsperger [29] | (15) | (16) |
Research Material (the Marking and the Source Origin of the Raw Material) | Porosity | Indicator Porosity | Density of a Solid Body | |||
---|---|---|---|---|---|---|
Absolute | Effective | Apparent | Skeleton | |||
εb, % | εef, % | e | ϑa, kg/m3 | ϑs, kg/m3 | ||
Name | No. Sample | |||||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
char (carbonizer) | I-1 | 42.2 | 21.1–33.7 | 0.7 | 1300 | 2250 |
Research Material: Char No. Sample: I-1 | |||||||
---|---|---|---|---|---|---|---|
No. | Reference PressurePre, MPa | Gas StreamQg∙103, m3/s | Resistance Flow Measured ΔPzm, kPa | No. | Reference PressurePre, MPa | Gas StreamQg∙103, m3/s | Resistance Flow Measured ΔPzm, kPa |
1 | 0.1 | 0.161 | 10.2 | 26 | 0.3 | 0.161 | 9.7 |
2 | 0.1 | 0.182 | 11.3 | 27 | 0.3 | 0.182 | 11.3 |
3 | 0.1 | 0.196 | 12.9 | 28 | 0.3 | 0.217 | 16.6 |
4 | 0.1 | 0.203 | 13.8 | 29 | 0.3 | 0.238 | 20.4 |
5 | 0.1 | 0.217 | 16.6 | 30 | 0.3 | 0.259 | 23.9 |
6 | 0.1 | 0.231 | 17.9 | 31 | 0.3 | 0.287 | 29.3 |
7 | 0.1 | 0.238 | 20.6 | 32 | 0.3 | 0.315 | 33.5 |
8 | 0.1 | 0.266 | 23.9 | 33 | 0.3 | 0.350 | 44.1 |
9 | 0.1 | 0.280 | 27.2 | 34 | 0.3 | 0.371 | 51.2 |
10 | 0.1 | 0.301 | 29.9 | 35 | 0.3 | - | - |
11 | 0.1 | 0.329 | 37.9 | 36 | 0.3 | - | - |
12 | 0.1 | 0.350 | 42.8 | 37 | 0.3 | - | - |
13 | 0.1 | 0.371 | 49.2 | 38 | 0.3 | - | - |
14 | 0.2 | 0.161 | 9.9 | 39 | 0.4 | 0.161 | 10.6 |
15 | 0.2 | 0.189 | 12.6 | 40 | 0.4 | 0.196 | 12.7 |
16 | 0.2 | 0.210 | 15.2 | 41 | 0.4 | 0.231 | 19.2 |
17 | 0.2 | 0.231 | 19.2 | 42 | 0.4 | 0.266 | 24.2 |
18 | 0.2 | 0.252 | 23.2 | 43 | 0.4 | 0.301 | 31.2 |
19 | 0.2 | 0.280 | 26.9 | 44 | 0.4 | 0.336 | 39.9 |
20 | 0.2 | 0.301 | 31.2 | 45 | 0.4 | 0.350 | 43.6 |
21 | 0.2 | 0.322 | 36.1 | 46 | 0.4 | 0.371 | 51.2 |
22 | 0.2 | 0.336 | 38.9 | 47 | 0.4 | - | - |
23 | 0.2 | 0.343 | 42.8 | 48 | 0.4 | - | - |
24 | 0.2 | 0.371 | 49.4 | 49 | 0.4 | - | - |
25 | 0.2 | 0.392 | 53.4 | 50 | 0.4 | - | - |
Flow Meter Type | Measurement Range | Scaling Equation—The Value of the Air Stream, dm3/min | Accuracy of Scaling |
---|---|---|---|
RDN 06-03 | 0–1.9 | Qg = (0.0137 scala) − 0.30086 | 0.97 |
R 10a | 0–38 | Qg = (0.2836 scala) + 9.9091 | 0.99 |
RDN 06-03 | 0–48 | Qg = (0.216·scala) + 1.4112 | 0.99 |
R 10m | 0–51 | Qg = (0.4264 scala) + 9.5 | 0.99 |
R | 0–1.5 | Qg = (10 mL/ measurement time) | ±5% |
Algorithm | Score |
---|---|
Expected value as an arithmetic mean. | 3.74 × 10−4 |
The measure of scattering, as a variance of the arithmetic mean. | 1.07 × 10−10 |
Standard deviation. | 1.03 × 10−5 |
The component of the measurement error limit: - a systematic border error, where the absolute error of the measuring instrument (RDN06-03 rotameter) is 5%. | 1.87 × 10−6 |
The component of the measurement error limit: - accidental random error. | 3.01 × 10−5 |
Limit measurement error at the confidence level probability p~0.99. | 3.29 × 10−5 |
The result of the measurement at the confidence level p~0.99 | 3.74 × 10−4 ± 3.29 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wałowski, G. Model of Flow Resistance Coefficient for a Fragment of a Porous Material Deposit with Skeletal Structure. Energies 2021, 14, 3355. https://doi.org/10.3390/en14113355
Wałowski G. Model of Flow Resistance Coefficient for a Fragment of a Porous Material Deposit with Skeletal Structure. Energies. 2021; 14(11):3355. https://doi.org/10.3390/en14113355
Chicago/Turabian StyleWałowski, Grzegorz. 2021. "Model of Flow Resistance Coefficient for a Fragment of a Porous Material Deposit with Skeletal Structure" Energies 14, no. 11: 3355. https://doi.org/10.3390/en14113355
APA StyleWałowski, G. (2021). Model of Flow Resistance Coefficient for a Fragment of a Porous Material Deposit with Skeletal Structure. Energies, 14(11), 3355. https://doi.org/10.3390/en14113355