A New MMC Sub-Module Topology with DC Fault Blocking Capability and Capacitor Voltage Self-Balancing Capability
Abstract
:1. Introduction
2. Topological Structure and Operation Mode of CHBFBSM
2.1. Topological Structure
2.2. Operating Mode
3. Analysis of Self-Balancing Characteristics
3.1. Analysis of Impulse Current
3.2. Energy Analysis
4. Analysis of DC Fault Blocking Characteristics
4.1. Pre-Blocking Stage
4.2. Blocking Stage
5. Simulation Results
5.1. DC Blocking Capability Verification
5.2. Capacitor Voltage Balance Ability Verification
5.3. Investment Cost Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Sánchez-Sánchez, E.; Groß, D.; Prieto-Araujo, E.; Dörfler, F.; Gomis-Bellmunt, O. Optimal Multivariable MMC Energy-Based Control for DC Voltage Regulation in HVDC Applications. IEEE Trans. Power Deliv. 2020, 35, 999–1009. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Albalate, R.; Forner, J. Modeling and Enhanced Control of Hybrid Full Bridge-Half Bridge MMCs for HVDC Grid Studies. Energies 2020, 13, 180. [Google Scholar] [CrossRef] [Green Version]
- Shenghui, C.; Seung-Ki, S. A Comprehensive DC Short-Circuit Fault Ride through Strategy of Hybrid Modular Multilevel Converters (MMCs) for Overhead Line Transmission. IEEE Trans. Power Electron. 2016, 31, 7780–7796. [Google Scholar]
- Nguyen, T.H.; Hosani, K.A.; Moursi, M.S.E.; Blaabjerg, F. An Overview of Modular Multilevel Converters in HVDC Transmission Systems with STATCOM Operation during Pole-to-Pole DC Short Circuits. IEEE Trans. Power Electron. 2019, 34, 4137–4160. [Google Scholar] [CrossRef]
- Xu, Z.; Xiao, H.; Xiao, L.; Zhang, Z. DC Fault Analysis and Clearance Solutions of MMC-HVDC Systems. Energies 2018, 11, 941. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Xu, Z.; Zhou, Y. Impacts of Three MMC-HVDC Configurations on AC System Stability under DC Line Faults. IEEE Trans. Power Syst. 2014, 29, 3030–3040. [Google Scholar] [CrossRef]
- Kim, G.; Lee, J.S.; Park, J.H.; Choi, H.D.; Lee, M.J. A Zero Crossing Hybrid Bidirectional DC Circuit Breaker for HVDC Transmission Systems. Energies 2021, 14, 1349. [Google Scholar] [CrossRef]
- Iman-Eini, H.; Liserre, M. DC Fault Current Blocking with the Coordination of Half-Bridge MMC and the Hybrid DC Breaker. IEEE Trans Ind. Electron. 2020, 67, 5503–5514. [Google Scholar] [CrossRef]
- Cwikowski, O.; Wood, A.; Miller, A.; Barnes, M.; Shuttleworth, R. Operating DC Circuit Breakers with MMC. IEEE Trans. Power Deliv. 2018, 33, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Jovcic, D.; Nguefeu, S.; Saad, H. Modelling of high-power hybrid DC circuit breaker for grid-level studies. IET Power Electron. 2016, 9, 237–246. [Google Scholar] [CrossRef]
- Franck, C.M. HVDC Circuit Breakers: A Review Identifying Future Research Needs. IEEE Trans. Power Deliv. 2011, 26, 998–1007. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Chen, C.; Wang, Z.; Xiong, J.; Zhang, K. An Improved Modular Multilevel Converter with DC Fault Blocking Capability Based on Half-Bridge Submodules and H-Bridge Circuit. IEEE Trans. Power Deliv. 2020, 35, 2682–2691. [Google Scholar] [CrossRef]
- Nguyen, T.; Lee, D. A novel submodule topology of MMC for blocking DC-fault currents in HVDC transmission systems. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015; pp. 2057–2063. [Google Scholar]
- Hu, J.; Xiang, M.; Lin, L.; Lu, M.; Zhu, J.; He, Z. Improved Design and Control of FBSM MMC with Boosted AC Voltage and Reduced DC Capacitance. IEEE Trans. Ind. Electron. 2018, 65, 1919–1930. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, F.; Li, Z.; Wang, P.; Li, Y. Capacitor Voltage Ripples Reduction of Full-bridge MMC with Circulating Current Injection Under Single-Line-to-Ground Fault Conditions. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 6084–6089. [Google Scholar]
- Xiang, W.; Lin, W.; Wen, J.; Yao, L.; Zhibing, W. Equivalent electromagnetic model of self-blocking MMC with DC fault isolation capability. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5. [Google Scholar]
- Li, R.; Fletcher, J.E.; Xu, L.; Holliday, D.; Williams, B.W. A hybrid modular multilevel converter with novel three-level cells for DC fault blocking capability. IEEE Trans. Power Deliv. 2015, 30, 2017–2026. [Google Scholar] [CrossRef] [Green Version]
- Nami, A.; Wang, L.; Dijkhuizen, F.; Shukla, A. Five level cross connected cell for cascaded converters. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 3–5 September 2013; pp. 1–9. [Google Scholar]
- Qin, J.; Saeedifard, M.; Rockhill, A.; Zhou, R. Hybrid Design of Modular Multilevel Converters for HVDC Systems Based on Various Submodule Circuits. IEEE Trans. Power Deliv. 2015, 30, 385–394. [Google Scholar] [CrossRef]
- Yu, X.; Wei, Y.; Jiang, Q. STATCOM Operation Scheme of the CDSM-MMC during a Pole-to-Pole DC Fault. IEEE Trans. Power Deliv. 2016, 31, 1150–1159. [Google Scholar] [CrossRef]
- Adam, G.P.; Ahmed, K.H.; Williams, B.W. Mixed cells modular multilevel converter. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014; pp. 1390–1395. [Google Scholar]
- Lee, J.-H.; Jung, J.-J.; Sul, S.-K. Balancing of Submodule Capacitor Voltage of Hybrid Modular Multilevel Converter under DC-Bus Voltage Variation of HVDC System. IEEE Trans. Power Electron. 2019, 34, 10458–10470. [Google Scholar] [CrossRef]
- Deng, F.; Chen, Z. Voltage-Balancing Method for Modular Multilevel Converters Switched at Grid Frequency. IEEE Trans. Ind. Electron. 2015, 62, 2835–2847. [Google Scholar] [CrossRef]
- Bai, Z.; Xia, H.; Ma, H.; Wang, J. MMC Capacitor Voltage Balancing Strategy Based on Carrier Rotation. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–5. [Google Scholar]
- Ghazanfari, A.; Mohamed, Y.A.I. A Hierarchical Permutation Cyclic Coding Strategy for Sensorless Capacitor Voltage Balancing in Modular Multilevel Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 576–588. [Google Scholar] [CrossRef]
- Wang, K.; Deng, Y.; Peng, H.; Chen, G.; Li, G.; He, X. An Improved CPS-PWM Scheme-Based Voltage Balancing Strategy for MMC with Fundamental Frequency Sorting Algorithm. IEEE Trans. Ind. Electron. 2019, 66, 2387–2397. [Google Scholar] [CrossRef]
- Mora, A.; Urrutia, M.; Cardenas, R.; Angulo, A.; Espinoza, M.; Diaz, M.; Lezana, P. Model-Predictive-Control-Based Capacitor Voltage Balancing Strategies for Modular Multilevel Converters. IEEE Trans. Ind. Electron. 2019, 66, 2432–2443. [Google Scholar] [CrossRef]
- Shu, H.; Lei, S.; Tian, X. A New Topology of Modular Multilevel Converter with Voltage Self-Balancing Ability. IEEE Access. 2019, 7, 184786–184796. [Google Scholar] [CrossRef]
- Tan, K.; Wang, Y.; Ji, M. A Fast restart Hybrid MMC Topology with Fault Ride-through Ability. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–5. [Google Scholar]
- Wang, R.; Li, Z.; Wen, X.; Liu, N.; Wang, X. A Novel MMC Sub-Module Topology with DC Fault Clearance Capability. IEEE Access. 2019, 7, 96085–96093. [Google Scholar] [CrossRef]
Advantages | Disadvantages | |
---|---|---|
AC circuit breaker (ACCB) | ACCB is a straightforward solution with the good economic efficiency and the high technical maturity [5]. | ACCB operating speed is slow, and the recovery time is long after the fault is removed [6]. |
DC circuit breaker (DCCB) | DCCB offers very low conduction losses and can interrupt the DC fault current in a very short time [7,8]. | High-voltage and large-capacity DC circuit breakers are facing huge challenges in terms of technical research and investment costs [9,10,11]. |
Improved topology | Improved topology does not require mechanical switch action, so the fault clearing time and the system recovery time after the fault are relatively fast [12]. | The cost of improved topology increases, but it is lower than DCCB [13]. |
Mode | T1 | T2 | T3 | T4 | T5 | Output | |
---|---|---|---|---|---|---|---|
normal operation | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
2 | 0 | 1 | 1 | 0 | 0 | Uc1 | |
3 | 1 | 0 | 0 | 0 | 1 | Uc2 | |
4 | 1 | 0 | 0 | 1 | 1 | Uc1//Uc2 | |
5 | 0 | 1 | 0 | 0 | 1 | Uc1 + Uc2 | |
blocked | iarm > 0 | 0 | 0 | 0 | 0 | 0 | Uc1 + Uc2 |
iarm < 0 | 0 | 0 | 0 | 0 | 0 | Uc2 − Uc1 |
Parameter | Value |
---|---|
Number of bridge arm sub-modules | 5 |
Sub-module capacitance value | 5 mF |
Bridge arm inductance | 10 mH |
Bridge arm resistance | 0.02 Ω |
Sub-module capacitor voltage | 1 kV |
DC side rated voltage | 10 kV |
DC side line load | 2 Ω + 5 mH |
System rated capacity | 12 MVA |
AC side rated line voltage | 8.66 kV |
inductance value | 3 mH |
Sub-Module Topology | Number of Capacitors | Number of Sub-Modules | Number of IGBTs | Number of Diodes | DC Fault Clearing Capability |
---|---|---|---|---|---|
HBSM | N | 2N | 4N | 4N | No |
FBSM | N | 2N | 8N | 8N | Yes |
CDSM | N | N | 5N | 7N | Yes |
SBSM | N | 2N | 6N | 8N | Yes |
CHBFBSM | N | N | 5N | 6N | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Ma, G.; Liu, X.; Xu, X.; Zhang, X. A New MMC Sub-Module Topology with DC Fault Blocking Capability and Capacitor Voltage Self-Balancing Capability. Energies 2021, 14, 3409. https://doi.org/10.3390/en14123409
Pang Y, Ma G, Liu X, Xu X, Zhang X. A New MMC Sub-Module Topology with DC Fault Blocking Capability and Capacitor Voltage Self-Balancing Capability. Energies. 2021; 14(12):3409. https://doi.org/10.3390/en14123409
Chicago/Turabian StylePang, Yuqi, Gang Ma, Xunyu Liu, Xiaotian Xu, and Xinyuan Zhang. 2021. "A New MMC Sub-Module Topology with DC Fault Blocking Capability and Capacitor Voltage Self-Balancing Capability" Energies 14, no. 12: 3409. https://doi.org/10.3390/en14123409
APA StylePang, Y., Ma, G., Liu, X., Xu, X., & Zhang, X. (2021). A New MMC Sub-Module Topology with DC Fault Blocking Capability and Capacitor Voltage Self-Balancing Capability. Energies, 14(12), 3409. https://doi.org/10.3390/en14123409