Analysis of Radial Inflow Turbine Losses Operating with Supercritical Carbon Dioxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radial-Inflow Turbine Design
2.2. Investigated Turbine Geometries
2.3. CFD Analysis
3. Results
3.1. Grid Dependency Study
3.2. Comparison of Loss Correlations and CFD Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
U | peripheral velocity, m/s |
C | absolute velocity, m/s |
W | relative velocity, m/s |
D | diameter, mm |
b | blade height, mm |
n | rotational speed, rpm |
Z | number of blades, - |
α | absolute flow angle |
β | relative flow angle |
tc | tip clearance height, mm |
η | efficiency, - |
Ns | specific speed |
h | enthalpy, kJ/kg |
f | friction factor |
L | length, mm |
ω | angular speed, rad/s |
qv | volumetric flow rate, m3/s |
Subscripts | |
0 | stator inlet |
1 | stator outlet/rotor inlet |
2 | rotor outlet |
h/hyd | hydraulic |
m | meanline |
References
- Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [Google Scholar] [CrossRef] [Green Version]
- Allam, R.; Martin, S.; Forrest, B.; Fetvedt, J.; Lu, X.; Freed, D.; Brown, G.W.L.; Sasaki, T.; Itoh, M.; Manning, J. Demonstration of the Allam Cycle: An update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture. Energy Procedia 2017, 114, 5948–5966. [Google Scholar] [CrossRef]
- Romei, A.; Gaetani, P.; Giostri, A.; Persico, G. The role of turbomachinery performance in the optimization of supercritical carbon dioxide power systems. J. Turbomach. 2020, 142, 071001. [Google Scholar] [CrossRef]
- Saeed, M.; Alawadi, K.; Kim, S.C. Performance of Supercritical CO2 Power Cycle and Its Turbomachinery with the Printed Circuit Heat Exchanger with Straight and Zigzag Channels. Energies 2021, 14, 62. [Google Scholar] [CrossRef]
- Wang, Y.; Dostal, V.; Hejzlar, P. Turbine design for supercritical CO2 brayton cycle. In Global 2003; American Nuclear Society: La Grange Park, IL, USA, 2003; pp. 1210–1220. [Google Scholar]
- Lv, G.; Yang, J.; Shao, W.; Wang, X. Aerodynamic design optimization of radial-inflow turbine in supercritical CO2 cycles using a one-dimensional model. Energy Convers. Manag. 2018, 165, 827–839. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, J.; Xia, J.; Guo, Y.; Zhao, P.; Dai, Y. Design and performance analysis of a supercritical CO2 radial inflow turbine. Appl. Therm. Eng. 2020, 167, 114757. [Google Scholar] [CrossRef]
- Qi, J.; Reddell, T.; Qin, K.; Hooman, K.; Jahn, I.H. Supercritical CO2 radial turbine design performance as a function of turbine size parameters. J. Turbomach. 2017, 139, 081008. [Google Scholar] [CrossRef]
- Fuller, R.; Preuss, J.; Noall, J. Turbomachinery for supercritical CO2 power cycles. In Proceedings of the ASME Turbo Expo, Copenhangen, Denmark, 5–11 June 2012; Volume 44717, pp. 961–966. [Google Scholar]
- Luo, D.; Liu, Y.; Sun, X.; Huang, D. The design and analysis of supercritical carbon dioxide centrifugal turbine. Appl. Therm. Eng. 2017, 127, 527–535. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.I.; Ahn, Y.; Yoon, H. Design methodology of supercritical CO2 brayton cycle turbomachineries. In Proceedings of the ASME Turbo Expo, Copenhangen, Denmark, 5–11 June 2012; pp. 975–983. [Google Scholar]
- White, M.T.; Bianchi, G.; Chai, L.; Tassou, S.A.; Sayma, A.I. Review of supercritical CO2 technologies and systems for power generation. Appl. Therm. Eng. 2021, 185, 116447. [Google Scholar] [CrossRef]
- Pasch, J.; Conboy, T.; Fleming, D.; Rochau, G. Supercritical CO2 Recompression Brayton Cycle: Completed Assembly; Sandia Report No. SAND2012-9546; Sandia National Laboratories (SNL): Albuquerque, NM, USA, 2012. [Google Scholar]
- Holaind, N.; De Miol, M.; Saravi, S.S.; Tassou, S.A.; Leroux, A.; Jouhara, H. Design of radial turbomachinery for supercritical CO2 systems using theoretical and numerical CFD methodologies. Energy Procedia 2017, 123, 313–320. [Google Scholar] [CrossRef]
- Son, S.; Jeong, Y.; Cho, S.K.; Lee, J.I. Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network. Appl. Energy 2020, 263, 114645. [Google Scholar] [CrossRef]
- Uusitalo, A.; Grönman, A.; Turunen-Saaresti, T. Design and loss analysis of radial turbines for supercritical CO2 Brayton cycles. Energy 2021, 230, 120878. [Google Scholar] [CrossRef]
- Balje, O.E. Turbomachines—A Guide to Design Selection and Theory; John Wiley: Hoboken, NJ, USA, 1981. [Google Scholar]
- Rohlik, H.E. Analytical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency; Nasa Technical Note; NTIS: Washington, DC, USA, 1968.
- Unglaube, T.; Chiang, H.W.D. Preliminary Design of Small-Scale Supercritical CO2 Radial Inflow Turbines. J. Eng. Gas Turbines Power 2020, 142, 021011. [Google Scholar] [CrossRef]
- Lee, S.; Gurgenci, H. A comparison of three methodological approaches for meanline design of supercritical CO2 radial inflow turbines. Energy Convers. Manag. 2020, 206, 112500. [Google Scholar] [CrossRef]
- Persky, R.; Sauret, E.; Beath, A. Robust design and optimisation of a radial turbine within a supercritical co2 solar brayton cycle. In Proceedings of the 11th World Congress on Structural and Multidisciplinary Optimisation (WCSMO-11), Sydney, Australia, 7–12 June 2015; pp. 1–6. [Google Scholar]
- Keep, J.A. On the Design of Small to Medium Scale Radial Inflow Turbines for Supercritical CO2 Power Cycles. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2019. [Google Scholar]
- Sarkar, J. Second law analysis of supercritical CO2 recompression Brayton cycle. Energy 2009, 34, 1172–1178. [Google Scholar] [CrossRef]
- Kulhanek, M.; Dostal, V. Supercritical carbon dioxide cycles thermodynamic analysis and comparison. In Proceedings of the International Symposium of Supercritical CO2 Power Cycles, Pittsburgh, PA, USA, 27–29 March 2011; pp. 1–12. [Google Scholar]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.
- Rohlik, H.E. Radial-Inflow Turbines. In Turbine Design and Application; Glassman, A.J., Ed.; NASA: Washington, DC, USA, 1972; Volume 290. [Google Scholar]
- Lee, J.; Lee, J.I.; Yoon, H.J.; Cha, J.E. Supercritical carbon dioxide turbomachinery design for water-cooled small modular reactor application. Nucl. Eng. Des. 2014, 270, 76–89. [Google Scholar] [CrossRef]
- Uusitalo, A.; Ameli, A.; Turunen-Saaresti, T. Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery. Energy 2019, 167, 60–79. [Google Scholar] [CrossRef]
- Wasserbauer, C.A.; Glassman, A.J. FORTRAN Program for Predicting Off-Design Performance of Radial-Inflow Turbines; NASA Technical Note Series; NASA: Washington, DC, USA, 1975.
- Moustapha, H.; Zelesky, M.F.; Baines, N.C.; Japikse, D. Axial and Radial Turbines; Concepts ETI: White River Junction, VT, USA, 2003; Volume 2. [Google Scholar]
- Cho, S.K.; Lee, J.; Lee, J.I. Comparison of Loss Models for Performance Prediction of Radial Inflow Turbine. Int. J. Fluid Mach. Syst. 2018, 11, 97–109. [Google Scholar] [CrossRef]
- Whitfield, A.; Baines, N.C. Design of Radial Turbomachines; Longman Scientific and Technical: Essex, UK, 1990. [Google Scholar]
- Whitfield, A.; Wallace, F.J. Study of Incidence Loss Models in Radial and Mixed-Flow Turbomachinery; Institution of Mechanical Engineers. In Proceedings of the Conference on Heat and Fluid Flow in Steam and Gas Turbine Plant, Coventry, UK, 3 April 1973. [Google Scholar]
- Jansen, W. A Method for Calculating the Flow in a Centrifugal Impeller when Entropy Gradients are Present. In Proceedings of the Royal Society Conference on Internal Aerodynamics (Turbomachinery), Cambridge, UK, 19–21 July 1967. [Google Scholar]
- Rahbar, K.; Mahmoud, S.; Al-Dadah, R.K.; Moazami, N. Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine. Energy Convers. Manag. 2015, 91, 186–198. [Google Scholar] [CrossRef]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Model for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Alireza, A. Supercritical CO2 Numerical Modelling and Turbomachinery Design. Ph.D. Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2019. [Google Scholar]
- Ameli, A.; Uusitalo, A.; Turunen-Saaresti, T.; Backman, J. Numerical sensitivity analysis for supercritical CO2 radial turbine performance and flow field. Energy Procedia 2017, 129, 1117–1124. [Google Scholar] [CrossRef]
- Benson, R.S. A review of methods for assessing loss coefficients in radial gas turbines. Int. J. Mech. Sci. 1970, 12, 905–932. [Google Scholar] [CrossRef]
Loss | Equation | Model/Source |
---|---|---|
Stator loss | Whitfield and Baines [32] | |
Passage loss (PLM1) | zI = 0.88 − 0.5ɸ, ɸ = Cr1/U1, KI = Cr1/Cr2 | Balje [27] |
Passage loss (PLM2) | K = 0.3 | Wasserbauer and Glassman [29] |
Passage loss (PLM3) | Kp = 0.11, c = Z/cosβavg | Moustapha et al. [30] |
Tip clearance loss | Jansen [34] | |
Incidence loss | Whitfield and Wallace [33] | |
Exit kinetic loss | Rahbar et al. [35] |
Ns | 0.35 | 0.4 | 0.45 | 0.5 | 0.55 | 0.6 | 0.65 |
---|---|---|---|---|---|---|---|
n [krpm] | 60.6 | 69.4 | 78.2 | 86.9 | 95.7 | 104.4 | 112.7 |
D1 [mm] | 110.4 | 97.3 | 86.9 | 78.5 | 71.5 | 65.2 | 59.5 |
b1 [mm] | 4.8 | 4.9 | 5.0 | 5.1 | 5.2 | 5.3 | 5.4 |
b2 [mm] | 16.7 | 16.8 | 16.8 | 16.9 | 16.9 | 16.0 | 14.6 |
D2, tip [mm] | 47.7 | 48.0 | 48.1 | 48.2 | 48.3 | 45.6 | 41.7 |
D2, hub [mm] | 14.3 | 14.4 | 14.4 | 14.5 | 14.5 | 13.7 | 12.5 |
α1 | 78.8 | 77.7 | 76.7 | 75.6 | 74.5 | 73.5 | 72.4 |
Z [–] | 16 | 15 | 14 | 14 | 13 | 12 | 12 |
Property | Coarse | Rel. Diff. % | Medium | Rel. Diff.% | Fine (Reduced y+) | Rel. Diff.% | Fine |
---|---|---|---|---|---|---|---|
s, [J/kgK] | 2762.1 | 0.11 | 2760.4 | 0.05 | 2759.8 | 0.02 | 2759.1 |
h, [J/kg] | 907,735 | 0.23 | 906,467 | 0.09 | 906,261 | 0.07 | 905,607 |
ρ [kg/m3] | 56.1 | 0.28 | 56.2 | 0.15 | 56.3 | 0.04 | 56.3 |
T [K] | 707.23 | 0.26 | 706.14 | 0.1 | 705.98 | 0.08 | 705.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uusitalo, A.; Grönman, A. Analysis of Radial Inflow Turbine Losses Operating with Supercritical Carbon Dioxide. Energies 2021, 14, 3561. https://doi.org/10.3390/en14123561
Uusitalo A, Grönman A. Analysis of Radial Inflow Turbine Losses Operating with Supercritical Carbon Dioxide. Energies. 2021; 14(12):3561. https://doi.org/10.3390/en14123561
Chicago/Turabian StyleUusitalo, Antti, and Aki Grönman. 2021. "Analysis of Radial Inflow Turbine Losses Operating with Supercritical Carbon Dioxide" Energies 14, no. 12: 3561. https://doi.org/10.3390/en14123561
APA StyleUusitalo, A., & Grönman, A. (2021). Analysis of Radial Inflow Turbine Losses Operating with Supercritical Carbon Dioxide. Energies, 14(12), 3561. https://doi.org/10.3390/en14123561