A Study on the Energy Reduction Measures of Data Centers through Chilled Water Temperature Control and Water-Side Economizer
Abstract
:1. Introduction
2. Building Outline
3. Analysis of Cooling Energy Consumption of Central Cooling System (Type 1)
3.1. System Modeling
3.2. Type 1 Model Simulation Result
4. Supply Chilled Water Temperature Control (Type 2)
4.1. System Modeling
4.2. Simulation Result
5. Water-Side Economizer Applied Model (Type 3)
5.1. System Modeling
5.2. Simulation Result
6. WSE Application and ΔT Variation Model (Type 4)
6.1. System Modeling
6.2. Simulation Result
6.2.1. Return Chilled Water Temperature and ΔT
6.2.2. Energy Consumption and Free Cooling Time
6.2.3. Comparison of Type 4 Energy Saving Rate
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shehabi, A.; Smith, S.; Sartor, D.; Brown, R.; Herrlin, M.; Koomey, J.; Masanet, E.; Horner, N.; Azevedo, I.; Lintner, W.; et al. United States Data Center Energy Usage Report; Number LBNL-1005775; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2016. [Google Scholar]
- Rong, H.; Zhang, H.; Xiao, S.; Li, C.; Hu, C. Optimizing energy consumption for data centers. Renew. Sustain. Energy Rev. 2016, 58, 674–691. [Google Scholar] [CrossRef]
- Dayarathna, M.; Wen, Y.; Fan, R. Data center energy consumption modeling: A survey. IEEE Commun. Surv. Tutor. 2016, 18, 732–794. [Google Scholar] [CrossRef]
- Ha, J.W.; Cho, S.; Kim, H.Y.; Song, Y.H. Annual energy consumption cut-off with cooling system design parameter changes in large office buildings. Energies 2020, 13, 2034. [Google Scholar] [CrossRef] [Green Version]
- Thu, K.; Saththasivam, J.; Saha, B.B.; Chua, K.J.; Srinivasa Murthy, S.; Ng, K.C. Experimental investigation of a mechanical vapour compression chiller at elevated chilled water temperatures. Appl. Therm. Eng. 2017, 123, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.T. How to design & control waterside economizers. ASHRAE J. 2014, 56, 30–36. [Google Scholar]
- Díaz, A.J.; Cáceres, R.; Torres, R.; Cardemil, J.M.; Silva-Llanca, L. Effect of climate conditions on the thermodynamic performance of a data center cooling system under water-side economization. Energy Build. 2020, 208, 1–12. [Google Scholar] [CrossRef]
- Christy, S.D.; Abimannan, S. Energy efficient free cooling system for data centers. In Proceedings of the 2011 IEEE Third International Conference on Cloud Computing Technology and Science, Athens, Greece, 29 November–1 December 2011; pp. 646–651. [Google Scholar] [CrossRef]
- Cho, J.; Lim, T.; Kim, B.S. Viability of datacenter cooling systems for energy efficiency in temperate or subtropical regions: Case study. Energy Build. 2012, 55, 189–197. [Google Scholar] [CrossRef]
- Stein, J. Waterside economizing in data Centers: Design and control considerations. ASHRAE Trans. 2009, 115, 192–200. [Google Scholar]
- Wang, J.; Zhang, Q.; Yoon, S.; Yu, Y. Reliability and availability analysis of a hybrid cooling system with water-side economizer in data center. Build. Environ. 2019, 148, 405–416. [Google Scholar] [CrossRef]
- Deymi-Dashtebayaz, M.; Valipour Namanlo, S.; Arabkoohsar, A. Simultaneous use of air-side and water-side economizers with the air source heat pump in a data center for cooling and heating production. Appl. Therm. Eng. 2019, 161, 114133. [Google Scholar] [CrossRef]
- Lin, P.; Avelar, V.; Bean, J. How Higher Chilled Water Temperature Can Improve Data Center Cooling System Efficiency. Int. J. Sci. Innov. Technol. 2018, 1, 88–101. [Google Scholar]
- Agrawal, A.; Khichar, M.; Jain, S. Transient simulation of wet cooling strategies for a data center in worldwide climate zones. Energy Build. 2016, 127, 352–359. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). ASHRAE Handbook Fundamentals; ASHRAE: Atlanta, GA, USA, 2019; ISBN 9781947192133. [Google Scholar]
- Ministry of Land, Infrastructure and Transport (MOLIT). Building Energy Saving Design Standards; MOLIT: Sejong, Korea, 2018. [Google Scholar]
- The U.S. Department of Energy. EnergyPlus Engineering Reference. Available online: https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v9.5.0/EngineeringReference.pdf (accessed on 30 March 2021).
- Udagawa, Y.; Waragai, S.; Yanagi, M.; Fukumitsu, W. Study on free cooling systems for data centers in Japan. In Proceedings of the International Conference on Telecommunications Energy (INTELEC), Orlando, FL, USA, 6–10 June 2010; pp. 1–5. [Google Scholar] [CrossRef]
Categories | Detail | |
---|---|---|
Building outlines | Site (Climate zone [15]) | Seoul, South Korea (4A) |
Use | Data Center | |
Operation time | 24 h/7 days | |
Floors | 9F | |
Floor area (m2) | 41,845 | |
Computer room area (m2) | 10,312 | |
Thermal Performance (W/m2·K) [16] | Outer wall/Roof/Door | 0.24/0.15/1.90 |
Internal room conditions | Rack (EA/room) | 3396 |
Internal load (W/m2) | 2305 |
Component | Design Parameter | Quantity |
---|---|---|
Cooling system | Central cooling system | |
Room | Cooling set condition (°C) | 26 |
CRAH | CRAH supply temp. (°C) | 20 |
Turbo chiller | Capacity (kW)/COP | 54,058/6.34 |
Inlet/outlet temp. (°C) | 12/7 | |
Water flow rate (m3/s) | 1.92 | |
Cooling tower | Capacity (kW) | 67,572 |
Inlet/outlet temp. (m3/s) | 37/32 | |
Fan power (kW) | 710 | |
Air flow rate (m3/s) | 2135 | |
Condenser water pump | Power (kW) | 513 |
Chilled water pump | Power (kW) | 367 |
CHW Set Temp. (°C) | Energy Consumption (MWh) | Energy Reduction Rate (%) | |||||
---|---|---|---|---|---|---|---|
Chiller | CRAH Fan | Cooling Tower Fan | Condenser Pump | CHW Pump | Sum | ||
7 | 41,765 | 42,762 | 6193 | 4491 | 2193 | 97,404 | |
8 | 40,904 | 42,762 | 6194 | 4491 | 2176 | 96,527 | |
9 | 40,059 | 42,762 | 6195 | 4491 | 2193 | 95,700 | |
10 | 40,061 | 42,762 | 6195 | 4491 | 2189 | 95,697 | |
11 | 40,058 | 42,762 | 6195 | 4491 | 2143 | 95,649 | |
12 | 40,073 | 42,762 | 6194 | 4491 | 2237 | 95,758 | |
13 | 40,075 | 42,762 | 6194 | 4491 | 2230 | 95,753 | |
14 | 40,076 | 42,762 | 6194 | 4491 | 2211 | 95,734 | |
15 | 40,272 | 44,133 | 6194 | 4491 | 2182 | 97,273 | |
16 | 41,075 | 49,782 | 6177 | 4491 | 2267 | 103,792 | |
17 | 40,618 | 46,353 | 6178 | 4491 | 2183 | 99,824 |
CHW Set Temp. (°C) | Energy Consumption (MWh) | Energy Reduction Rate (%) | |||||
---|---|---|---|---|---|---|---|
Chiller | CRAH Fan | Cooling Tower Fan | Condenser Pump | CHW Pump | Sum | ||
7 | 29,521 | 46,142 | 7515 | 6448 | 2363 | 91,990 | |
8 | 26,298 | 46,142 | 7746 | 6620 | 2342 | 89,148 | |
9 | 22,975 | 46,142 | 7840 | 5997 | 2325 | 85,279 | |
10 | 21,391 | 46,142 | 7586 | 5664 | 2274 | 83,058 | |
11 | 19,959 | 46,142 | 7213 | 6107 | 2216 | 81,638 | |
12 | 18,572 | 46,142 | 7225 | 5410 | 2166 | 79,515 | |
13 | 16,380 | 48,778 | 7186 | 5708 | 1915 | 79,967 | |
14 | 15,172 | 49,237 | 7621 | 6372 | 1790 | 80,192 | |
15 | 14,225 | 50,171 | 7996 | 7075 | 1662 | 81,131 | |
16 | 13,195 | 49,702 | 8108 | 7254 | 1540 | 79,799 | |
17 | 11,935 | 49,702 | 8050 | 7240 | 1415 | 78,343 |
CHW Set Temp. (°C) | Energy Consumption (MWh) | Energy Reduction Rate (%) | |||||
---|---|---|---|---|---|---|---|
Chiller | CRAH Fan | Cooling Tower Fan | Condenser Pump | CHW Pump | Sum | ||
7 | 21,909 | 40,657 | 8236 | 6905 | 967 | 78,673 | |
8 | 19,500 | 42,762 | 7848 | 6183 | 936 | 77,229 | |
9 | 16,975 | 42,762 | 7797 | 6211 | 864 | 74,610 | |
10 | 14,982 | 42,762 | 7264 | 6250 | 763 | 72,023 | |
11 | 13,415 | 42,762 | 6707 | 6388 | 697 | 69,970 | |
12 | 18,214 | 41,146 | 7219 | 5741 | 1680 | 74,000 | |
13 | 15,615 | 40,873 | 6733 | 5514 | 1155 | 69,889 | |
14 | 14,114 | 40,997 | 6623 | 5474 | 1093 | 68,301 | |
15 | 12,749 | 41,285 | 6704 | 6280 | 1026 | 68,044 | |
16 | 11,391 | 42,012 | 6943 | 6755 | 962 | 68,064 | |
17 | 10,043 | 42,762 | 7293 | 7234 | 909 | 68,241 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Ha, J.-W.; Park, K.-S.; Song, Y.-H. A Study on the Energy Reduction Measures of Data Centers through Chilled Water Temperature Control and Water-Side Economizer. Energies 2021, 14, 3575. https://doi.org/10.3390/en14123575
Kim Y-J, Ha J-W, Park K-S, Song Y-H. A Study on the Energy Reduction Measures of Data Centers through Chilled Water Temperature Control and Water-Side Economizer. Energies. 2021; 14(12):3575. https://doi.org/10.3390/en14123575
Chicago/Turabian StyleKim, Yu-Jin, Ju-Wan Ha, Kyung-Soon Park, and Young-Hak Song. 2021. "A Study on the Energy Reduction Measures of Data Centers through Chilled Water Temperature Control and Water-Side Economizer" Energies 14, no. 12: 3575. https://doi.org/10.3390/en14123575
APA StyleKim, Y. -J., Ha, J. -W., Park, K. -S., & Song, Y. -H. (2021). A Study on the Energy Reduction Measures of Data Centers through Chilled Water Temperature Control and Water-Side Economizer. Energies, 14(12), 3575. https://doi.org/10.3390/en14123575