The Absorption Performance of Ionic Liquids–PEG200 Complex Absorbent for VOCs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Method of IL–PEG200 Complex Absorbent
2.3. Characterization
2.4. Absorption Process
2.5. Analysis of VOC
2.6. The Saturated Absorption Capacity of Absorption
2.7. COSMO-SAC Model
2.8. Quantum Chemistry Calculation
3. Results
3.1. Absorbent Screening
3.2. Influence of Different Mass Fractions of IL in Absorbent
3.3. Influence of Variable Parameters on VOC Absorptivity in the Complex Absorption
3.4. Recovery Performance
3.5. Thermodynamic Calculation and Quantitative Calculation
3.6. Interaction Energy Analysis between IL and Each Absorbed Substance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, P.; Tang, Z.-J.; Chen, X.-B.; Tang, Z.-X.; Chen, D.-S.; Huang, J.-H.; Zeng, W.-H.; Cen, C.-P. Experimental study on the absorption of toluene from exhaust gas by paraffin/surfactant/water emulsion. J. Chem. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Castillo, A.-S.R.; Biard, P.-F.; Guiheneuf, S.; Paquin, L.; Amrane, A.; Couvert, A. Assessment of VOC absorption in hydrophobic ionic liquids: Measurement of partition and diffusion coefficients and simulation of a packed column. Chem. Eng. J. (Amst. Neth.) 2019, 360, 1416–1426. [Google Scholar]
- Kampa, M.; Castanas, E.J.E.P. Human health effects of air pollution. Environ. Pollut. (Oxford UK) 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Bin Babar, Z.; Shareefdeen, Z. Management and control of air emissions from electronic industries. Clean Technol. Environ. Policy 2014, 16, 69–77. [Google Scholar] [CrossRef]
- Karimi, B.; Meyer, C.; Gilbert, D.; Bernard, N. Air pollution below WHO levels decreases by 40% the links of terrestrial microbial networks. Environ. Chem. Lett. 2016, 14, 467–475. [Google Scholar] [CrossRef]
- Yu, G.; Mu, M.; Li, J.; Wu, B.; Xu, R.; Liu, N.; Chen, B.; Dai, C. Imidazolium-based ionic liquids introduced into pi-electron donors: Highly efficient toluene capture. ACS Sustain. Chem. Eng. 2020, 8, 9058–9069. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Grimes, S.; Cai, H.; Meng, Z. Study on the absorbability, regeneration characteristics and thermal stability of ionic liquids for VOCs removal. Chem. Eng. J. (Amst. Neth.) 2017, 328, 353–359. [Google Scholar] [CrossRef]
- Salvador, S.; Commandré, J.; Kara, Y. Thermal recuperative incineration of VOCs: CFD modelling and experimental validation. Appl. Therm. Eng. 2006, 26, 2355–2366. [Google Scholar] [CrossRef] [Green Version]
- Mohseni, M.; Allen, D.G. Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds. Chem. Eng. Sci. 2000, 55, 1545–1558. [Google Scholar] [CrossRef]
- Satoh, K.; Matsuzawa, T.; Itoh, H. Decomposition of benzene in a corona discharge at atmospheric pressure. Thin Solid Films 2008, 516, 4423–4429. [Google Scholar] [CrossRef]
- Ma, X.; Wu, M.; Liu, S.; Huang, J.; Sun, B.; Zhou, Y.; Zhu, Q.; Lu, H. Concentration control of volatile organic compounds by ionic liquid absorption and desorption. Chin. J. Chem. Eng. 2019, 27, 2383–2389. [Google Scholar] [CrossRef]
- Chen, J.; Li, G.; He, Z.; An, T. Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst. J. Hazard. Mater. 2011, 190, 416–423. [Google Scholar] [CrossRef]
- Goss, K.U.; Eisenreich, S.J. Adsorption of VOCs from the gas phase to different minerals and a mineral mixture. Environ. Sci. Technol. 1996, 30, 2135–2142. [Google Scholar] [CrossRef]
- Hamad, A.; Fayed, M.E. Simulation-aided optimization of volatile organic compounds recovery using condensation. Chem. Eng. Res. Des. 2004, 82, 895–906. [Google Scholar] [CrossRef]
- Modelski, S.; Kołtuniewicz, A.; Witek-Krowiak, A. Kinetics of VOC absorption using capillary membrane contactor. Chem. Eng. J. (Amst. Neth.) 2011, 168, 1016–1023. [Google Scholar] [CrossRef]
- Parmar, G.R.; Rao, N.N. Emerging control technologies for volatile organic compounds. Crit. Rev. Environ. Sci. Technol. 2009, 39, 41–78. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Yan, K.; Shang, Z.; Zou, B.; Jiang, S. Research progress of the treatment of waste gas containing chlorinated volatile organic compounds. Mod. Chem. Ind. 2016, 36, 46–49. [Google Scholar]
- Biard, P.-F.; Couvert, A. Overview of mass transfer enhancement factor determination for acidic and basic compounds absorption in water. Chem. Eng. J. (Amst. Neth.) 2013, 222, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Noorain, R.; Kindaichi, T.; Ozaki, N.; Aoi, Y.; Ohashi, A. Biogas purification performance of new water scrubber packed with sponge carriers. J. Cleaner Prod. 2019, 214, 103–111. [Google Scholar] [CrossRef]
- Welton, T.J.C. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef]
- Wilkes, J.S. A short history of ionic liquids—From molten salts to neoteric solvents. Green Chem. 2002, 4, 73–80. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, S.; Lei, Z.; Xu, R. Removal of methyl ethyl ketone and sec-butanol from hydrogen by absorption with ionic liquids. Ind. Eng. Chem. Res. 2020, 59, 14476–14484. [Google Scholar] [CrossRef]
- Lei, Z.; Gao, H.; Yu, G.; Jiang, Y. Capturing volatile ester compounds from gas mixture with ionic liquids. J. Mol. Liq. 2019, 281, 517–527. [Google Scholar] [CrossRef]
- Wenliang, W.U.; Tao, L.I.; Gao, H.; Shang, D.; Wenhui, T.U.; Wang, B.; Zhang, X. Efficient absorption of dichloromethane using imidazolium based ionic liquids. Chin. J. Process Eng. 2019, 19, 173–180. [Google Scholar]
- Li, C.-H.; Gao, K.-X.; Meng, Y.-N.; Wu, X.-K.; Zhang, F.; Wang, Z.-X. Solution thermodynamics of imidazolium-based ionic liquids and volatile organic compounds: Benzene and acetone. J. Chem. Eng. Data 2015, 60, 1600–1607. [Google Scholar] [CrossRef]
- Quijano, G.; Couvert, A.; Amrane, A.; Darracq, G.; Couriol, C.; Le Cloirec, P.; Paquin, L.; Carrie, D. Absorption and biodegradation of hydrophobic volatile organic compounds in ionic liquids. Water Air Soil Pollut. 2013, 224, 1528. [Google Scholar] [CrossRef]
- Wei, S.-M.; Hu, J.-M.; Wang, X.-D.; Long, C.; Zhang, F.; Zhang, Z.-B. Characterization of absorption performance for gaseous acetone with ionic liquid solutions. Chem. Eng. Technol. 2019, 42, 2658–2665. [Google Scholar] [CrossRef]
- Lin, S.T.; Chang, J.; Wang, S.; Goddard, W.A.; Sandler, S.I. Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model. J. Phys. Chem. A 2003, 108, 7429–7439. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.T.; Sandler, S.I. A priori phase equilibrium prediction from a segment contribution solvation model. Ind. Eng. Chem. Res. 2002, 41, 899–913. [Google Scholar] [CrossRef]
- Wang, S.; Sandler, S.I.; Chen, C.-C. Refinement of COSMO-SAC and the applications. Ind. Eng. Chem. Res. 2007, 46, 7275–7288. [Google Scholar] [CrossRef]
- Lin, S.T.; Sandler, S.I. Infinite dilution activity coefficients from ab initio solvation calculations. AIChE J. 1999, 45, 2606–2618. [Google Scholar] [CrossRef]
- Hsieh, C.-M.; Sandler, S.I.; Lin, S.-T. Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions. Fluid Phase Equilib. 2010, 297, 90–97. [Google Scholar] [CrossRef]
- Fang, J.; Zhao, R.; Su, W.; Li, C.; Liu, J.; Li, B. A molecular design method based on the COSMO-SAC model for solvent selection in ionic liquid extractive distillation. AIChE J. 2016, 62, 2853–2869. [Google Scholar] [CrossRef]
- DMol3. Materials Studio; Accelrys Software Inc.: San Diego, CA, USA, 2009. [Google Scholar]
- Mullins, E.; Oldland, R.; Liu, Y.A.; Wang, S.; Sandler, S.I.; Chen, C.-C.; Zwolak, M.; Seavey, K.C. Sigma-profile database for using COSMO-based thermodynamic methods. Ind. Eng. Chem. Res. 2006, 45, 4389–4415. [Google Scholar] [CrossRef]
- Delley, B. The conductor-like screening model for polymers and surfaces. Mol. Simul. 2006, 32, 117–123. [Google Scholar] [CrossRef]
- Hsieh, M.-T.; Lin, S.-T. A predictive model for the excess gibbs free energy of fully dissociated electrolyte solutions. AIChE J. 2011, 57, 1061–1074. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09 Revision D; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Boys, S.F.; Bernardi, F.J.M.P. The calculation of small molecular interactions by the differences of separate total energies. Mol. Phys. 2002, 19, 553–566. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1998, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Condensed matter. Development of the Colle-Salvetti correlation-energy into a function of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, T.R.; Bandopadhyay, A.; Parthasarathy, R.; Kumar, R. Gas—Liquid interfacial area in stirred vessels: The effect of an immiscible liquid phase. Chem. Eng. Sci. 1985, 40, 209–214. [Google Scholar] [CrossRef]
- Gonzalez-Miquel, M.; Palomar, J.; Rodriguez, F. Selection of ionic liquids for enhancing the gas solubility of volatile organic compounds. J. Phys. Chem. B 2013, 117, 296–306. [Google Scholar] [CrossRef]
- Santiago, R.; Lemus, J.; Xiao Outomuro, A.; Bedia, J.; Palomar, J. Assessment of ionic liquids as H2S physical absorbents by thermodynamic and kinetic analysis based on process simulation. Sep. Purif. Technol. 2020, 233, 116050. [Google Scholar] [CrossRef]
- Jaschik, M.; Piech, D.; Warmuzinski, K.; Jaschik, J. Prediction of gas solubility in ionic liquids using the COSMO-SAC model. Chem. Process Eng. Inz. Chem. Proces. 2017, 38, 19–30. [Google Scholar] [CrossRef]
- Yu, G.; Dai, C.; Gao, H.; Zhu, R.; Du, X.; Lei, Z. Capturing condensable gases with ionic liquids. Ind. Eng. Chem. Res. 2018, 57, 12202–12214. [Google Scholar] [CrossRef]
- Li, C.; Wu, X.; Wang, Z.; Zhang, F.; Zhang, Z. Thermodynamic study on absorption of low-pressure benzene vapor in imidazolium-based ionic liquids. J. Nanjing Univ. Nat. Sci. 2015, 51, 700–706. [Google Scholar]
- Zhang, S.J.; Yuan, X.L.; Chen, Y.H.; Zhang, X.P. Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures. J. Chem. Eng. Data 2005, 50, 1582–1585. [Google Scholar] [CrossRef]
- Zheng, D.; Dong, L.; Wu, X. New approach for absorbent species selection with excess gibbs function. Ind. Eng. Chem. Res. 2013, 52, 9480–9489. [Google Scholar] [CrossRef]
- Kato, R.; Gmehling, J. Systems with ionic liquids: Measurement of VLE and gamma(infinity) data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(O1). J. Chem. Thermodyn. 2005, 37, 603–619. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.-S.; Feng, Y.-X.; Zhang, C.-Y. Activity coefficients of organic solutes at infinite dilution in ionic liquids. 1. 1-Hexyl-3-methylimidazolium hexafluorophosphate and 1-Octyl-3-methylimidazolium hexafluorophosphate and their application to alkane/aromatic and aromatic/aromatic hydrocarbon separation. Ind. Eng. Chem. Res. 2011, 50, 10755–10764. [Google Scholar]
Absorbents | Saturated Absorption (mg·g−1) |
---|---|
[HMIM][Cl] | 114.97 |
PEG200 | 33.21 |
[HMIM][Cl]–PEG200 (60 wt% [HMIM][Cl]) | 81.36 |
Composition (wt%) | Viscosity (mPa·s) | ||||||
---|---|---|---|---|---|---|---|
[HMIM][Cl] | PEG200 | 298.15 K | 303.15 K | 308.15 K | 313.15 K | 323.15 K | 333.15 K |
0 | 100 | 36 | 32 | 27 | 24 | 18 | 14 |
50 | 50 | 180 | 140 | 107 | 88 | 58 | 40 |
60 | 40 | 288 | 199 | 149 | 115 | 68 | 37 |
70 | 30 | 421 | 299 | 214 | 158 | 90 | 55 |
100 | 0 | 580 | 418 | 296 | 218 | 149 | 90 |
Absorbent | γ∞ | |||||
---|---|---|---|---|---|---|
303.15 K | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | |
Benzene | 2.0904 | 2.1522 | 2.2090 | 2.2611 | 2.3088 | 2.3521 |
DCM | 0.0744 | 0.0866 | 0.0997 | 0.1137 | 0.1285 | 0.1440 |
Absorbent | Hi | |||||
---|---|---|---|---|---|---|
303.15 K | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | |
Benzene | 33.137 | 52.295 | 79.724 | 117.083 | 169.361 | 237.387 |
DCM | 5.254 | 8.849 | 14.36 | 22.541 | 33.931 | 50.178 |
Absorbent | ΔG (kJ·mol−1) | ΔH (kJ·mol−1) | ΔS (J·mol−1·K −1) | |
---|---|---|---|---|
Benzene | 8.823 | −36.009 | −132.576 | −2299.26 |
DCM | 4.181 | −41.147 | −149.525 | −11,978.797 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Luo, J.; Sun, T.; Yu, F.; Li, C. The Absorption Performance of Ionic Liquids–PEG200 Complex Absorbent for VOCs. Energies 2021, 14, 3592. https://doi.org/10.3390/en14123592
Zhang W, Luo J, Sun T, Yu F, Li C. The Absorption Performance of Ionic Liquids–PEG200 Complex Absorbent for VOCs. Energies. 2021; 14(12):3592. https://doi.org/10.3390/en14123592
Chicago/Turabian StyleZhang, Wenlin, Jinping Luo, Tengfei Sun, Fengshou Yu, and Chunli Li. 2021. "The Absorption Performance of Ionic Liquids–PEG200 Complex Absorbent for VOCs" Energies 14, no. 12: 3592. https://doi.org/10.3390/en14123592
APA StyleZhang, W., Luo, J., Sun, T., Yu, F., & Li, C. (2021). The Absorption Performance of Ionic Liquids–PEG200 Complex Absorbent for VOCs. Energies, 14(12), 3592. https://doi.org/10.3390/en14123592