Characteristics of Mineralogy, Lithofacies of Fine-Grained Sediments and Their Relationship with Sedimentary Environment: Example from the Upper Permian Longtan Formation in the Sichuan Basin
Abstract
:1. Introduction
2. Geological Setting and Sedimentary Facies of Longtan Formation
3. Material and Methods
4. Results
4.1. Mineralogy
4.2. Total Organic Carbon
4.3. Shale Lithofacies Assemblages
4.3.1. Clayey Shale
4.3.2. Carbonaceous Shale
4.3.3. Siliceous Shale
4.3.4. Mixed Shale
5. Discussion
5.1. Relationships between Shale Lithofacies Assemblages and TOC
5.2. Deposition Environment Model
6. Conclusions
- (1)
- The mineral composition of the Longtan Formation has strong mineral heterogeneity, the XRD results show that the main minerals include quartz, clay minerals, carbonate minerals (calcite, dolomite and siderite), feldspar (plagioclase and potash feldspar) and pyrite. TOC values of the Longtan Formation has a wide distribution range from 0.065% to 74.67% with an average value of 5.73% (median value of 1.59%).
- (2)
- Combined with thin section, SEM and XRD analysis, four types of lithofacies assemblages are distinguished: clayey mudstone, carbonaceous shale, siliceous shale and mixed shale. The TOC values of different shale lithofacies is quite different, CLS has the highest TOC content, followed by SS and MS, CAS is the lowest.
- (3)
- From shore swamp and tidal flat to shallow and deep water melanged accumulation shelf, the Longtan Formation has shown a downward trend due to the influence of detrital input. The shore swamp of the Longtan Formation is most influenced by the terrestrial input and mainly develops CLS and MS. The tidal flat is influenced by the terrestrial input and can also deposit carbonate minerals, developing CLS, CAS and MS. The shallow water melanged accumulation shelf develops CAS and MS dominated by clay and carbonate minerals. The deep water miscible shelf develops CLS and SS, whose mineral composition is similar to that of the shore swamp, but the quartz minerals are mainly formed by chemical and biological reactions, which are related to the Permian global chert event. The depositional environment of the Longtan Formation controls the shale mineral assemblage of the Longtan Formation and also influences the TOC content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, C.N.; Dong, D.Z.; Wang, S.J.; Li, J.Z.; Li, X.J.; Wang, Y.M. Geological characteristics and resource potential of shale gas in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Liu, G.X.; Jin, Z.J.; Deng, M.; Zhai, C.B.; Guan, H.L.; Zhang, C.J. Exploration potential for shale gas in the Upper Permian Longtan Formation in southeastern Sichuan basin. Oil Gas Geol. 2015, 36, 481–487. [Google Scholar]
- Potter, C.J. Paleozoic shale gas resources in the Sichuan Basin, China. AAPG Bull. 2018, 102, 987–1009. [Google Scholar] [CrossRef]
- Lin, L.B.; Yu, Y.; Zhai, C.B.; Li, Y.H.; Wang, Y.N.; Liu, G.X.; Guo, Y.; Gao, J. Paleogeography and shale development characteristics of the Late Permian Longtan Formation in southeastern Sichuan Basin, China. Mar. Petrol. Geol. 2018, 95, 67–81. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, W.; Zhang, R.; Liu, S.M.; Zhou, Q.M. Characterizations of pore, mineral and petrographic properties of marine shale using multiple techniques and their implications on gas storage capability for Sichuan Longmaxi gas shale field in China. Fuel 2019, 241, 360–371. [Google Scholar] [CrossRef]
- Zhao, J.H.; Jin, Z.J.; Hu, Q.H.; Liu, K.Y.; Liu, G.X.; Gao, B.; Liu, Z.B.; Zhang, Y.Y.; Wang, R.Y. Geological controls on the accumulation of shale gas: A case study of the early Cambrian shale in the Upper Yangtze area. Mar. Petrol Geol. 2019, 107, 423–437. [Google Scholar] [CrossRef]
- Hu, G.Y.; Yu, C.; Ni, Y.Y.; Huang, S.P.; Tian, X.W. Comparative study of stable carbon and hydrogen isotopes of alkane gases sourced from the Longtan and Xujiahe coal-bearing measures in the Sichuan Basin, China. Int. J. Coal. Geol. 2013, 116–117, 293–301. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Xiao, Z.H.; Dong, C.Y.; Ye, X.Z.; Li, H.J.; Zhang, Y.; Ma, Y.; Ma, L.; Xu, Y.H. The geochemical characteristics and gas potential of the Longtan formation in the eastern Sichuan Basin, China. J. Petrol. Sci. Eng. 2019, 179, 1102–1113. [Google Scholar] [CrossRef]
- Ma, X.; Guo, S.B. Study on pore evolution and diagenesis division of a Permian Longtan transitional shale in Southwest Guizhou, China. Energy Sci. Eng. 2021, 9, 58–79. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Gu, S.X.; Li, Y.; Zou, H.Y.; Guo, T.L. Biological organic source and depositional environment of over-mature source rocks of Longtan Formation in Sichuan basin. Geochimica 2012, 41, 35–44. [Google Scholar]
- Cao, Q.G.; Liu, G.X.; Zhang, C.J.; Pan, W.L. Sedimentary environment and its controlling on source rocks during late Permian in Sichuan Basin. Pet. Geol. Exp. 2013, 35, 36–41. [Google Scholar]
- Wei, Z.F.; Wang, Y.L.; Wu, C.J.; Wu, B.X.; Shun, Z.P.; Li, S.X.; Wei, W. Geochemical Characteristics of Source Rock from Upper Permian Longtan Formation in Sichuan Basin. Nat. Gas Geosci. 2015, 26, 1613–1618. [Google Scholar]
- Zhang, J.Z.; Li, X.Q.; Wei, Q.; Sun, K.X.; Zhang, G.W.; Wang, F.Y. Characterization of full-sized pore structure and fractal characteristics of marine– continental transitional Longtan Formation shale of Sichuan Basin, South China. Energy Fuels 2017, 31, 10490–10504. [Google Scholar] [CrossRef]
- Cao, T.T.; Deng, M.; Song, Z.; Luo, H.; Hursthouse, A.S. Characteristics and controlling factors of pore structure of the Permian shale in southern Anhui province, East China. J. Nat. Gas. Sci. Eng. 2018, 60, 228–245. [Google Scholar] [CrossRef] [Green Version]
- Schieber, J.; Zimmerle, W. The History and Promise of Shale Research. In Shale and Mudstones; Basin Studies, Sedimentology and Paleontology; Schieber, J., Zimmerle, W., Sethi, P., Eds.; Schweizerbart’ sche Verlagsbuchhandlung: Stuttgart, Germany, 1998. [Google Scholar]
- Timms, N.E.; Olierook, H.K.H.; Wilson, M.E.J.; Piane, C.D.; Hamilton, P.J.; Cope, P.; Stütenbecker, L. Sedimentary facies analysis, mineralogy and diagenesis of the Mesozoic aquifers of the central Perth Basin, Western Australia. Mar. Petrol. Geol. 2015, 60, 54–78. [Google Scholar] [CrossRef]
- Loucks, R.G.; Ruppel, S.C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef] [Green Version]
- Du, X.B.; Zhang, M.Q.; Lu, Y.C.; Ping, C.; Lu, Y.B. Lithofacies and depositional characteristics of gas shales in the western area of the Lower Yangtze, China. Geol. J. 2015, 50, 683–701. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, S.G.; Ran, B.; Li, Z.W. Geochemistry and sedimentology of the Upper Ordovician-lower Silurian black shale in the northern margin of the Upper Yangtze Platform, South China: Implications for depositional controls on organic-matter accumulation. Aust. J. Earth Sci. 2019, 67, 129–150. [Google Scholar] [CrossRef]
- Bureau of Geology and Mineral Resources of Sichuan Province (BGMRSP). Regional Geology of Sichuan Province; Geological Publishing House: Beijing, China, 1991. [Google Scholar]
- Wang, D.A. The geochemical feature of siliceous rocks since late proterozoic in the Yangtze platform and their genesis. Chin. J. Geol. 1994, 29, 41–54. [Google Scholar]
- Yu, Y.; Lin, L.B.; Deng, X.L.; Wang, Y.N.; Li, Y.H.; Guo, Y. Geochemical features of the Middle–Upper Permian cherts and implications for origin, depositional environment in the Sichuan Basin, SW China. Geol. J. 2020, 55, 1493–1506. [Google Scholar] [CrossRef]
- Cao, T.T.; Liu, G.X.; Cao, Q.G.; Deng, M. Influence of maceral composition on organic pore development in shale: A case study of transitional Longtan Formation shale in eastern Sichuan Basin. Oil Gas Geol. 2018, 39, 40–53. [Google Scholar]
- He, J.H.; Deng, H.C.; Ma, R.L.; Wang, R.Y.; Wang, Y.Y.; Li, A. Reservoir characteristics of the Lower Jurassic lacustrine shale in the Eastern Sichuan Basin and its effect on gas properties: An integrated approach. Energies 2020, 13, 4495. [Google Scholar] [CrossRef]
- Hao, F.; Guo, T.L.; Zhu, Y.M.; Cai, X.Y.; Zou, H.Y.; Li, P.P. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan basin, China. AAPG Bull. 2008, 92, 611–637. [Google Scholar] [CrossRef]
- Ma, Y.S.; Guo, X.S.; Guo, T.L.; Huang, R.; Cai, X.Y.; Li, G.X. The Puguang gas field: New giant discovery in the mature Sichuan Basin, southwest China. AAPG Bull. 2007, 91, 627–643. [Google Scholar] [CrossRef]
- Wang, C.S.; Li, X.H.; Chen, H.D.; Qin, J.X. Permian sea-level changes and rising-falling events in South China. Acta Sedimentol. Sin. 1999, 17, 536–541. [Google Scholar]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Petrol. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Liang, Q.S.; Zhang, X.; Tian, J.C. Geological and geochemical characteristics of marine-continental transitional shale from the Lower Permian Taiyuan Formation, Taikang Uplift, southern North China Basin. Mar. Petrol. Geol. 2018, 98, 229–242. [Google Scholar] [CrossRef]
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Wang, G.C.; Carr, T.R. Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian Basin. Comput. Geosci. 2012, 49, 51–163. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Yang, H.; Xie, L.Q.; Yang, Y.H. Lake-bottom hydrothermal activities and their influence on high-quality source rock development: A case from Chang 7 source rocks in Ordos Basin. Pet. Explor. Dev. 2010, 37, 424–429. [Google Scholar]
- Beauchamp, B.; Baud, A. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation. Palaeogeogr. Palaeocl. 2002, 184, 37–63. [Google Scholar] [CrossRef] [Green Version]
Well | Depth (m) | Q. | PF. | PL. | Cal. | Dol. | An. | Ba. | Py. | Sid. | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|
LG70 | 7090 | 7.8 | 0.9 | 1.0 | 44.8 | 12.1 | 3.6 | 2.1 | 2.4 | 5.5 | 19.8 |
LG70 | 7115 | 9.9 | 0.9 | / | 49.7 | 9.5 | 3.9 | / | 3.1 | 6.8 | 16.2 |
LG70 | 7128 | 7.9 | 0.9 | 1.0 | 45.4 | 9.5 | / | 3.6 | 4.8 | 6.8 | 20.1 |
LG70 | 7152 | 24.3 | 0.5 | 0.9 | 52.7 | 5.8 | 1.1 | 2.0 | 3.0 | / | 9.7 |
LG70 | 7156 | 25.0 | / | 1.5 | 39.1 | 14.4 | 0.8 | 2.7 | 3.6 | / | 12.9 |
LongT1 | 5660 | 8.1 | / | 8.1 | 48.3 | 15.0 | / | 3.3 | 3.1 | 14.1 | |
LongT1 | 5696 | 26.5 | / | 1.4 | 52.2 | 9.1 | / | 2.4 | 3.1 | 5.3 | |
LongT1 | 5706 | 19.2 | / | 0.6 | 59.7 | 6.3 | / | 4.9 | 3.1 | 6.2 | |
NC2 | 5803 | 26.2 | / | 11.3 | 22.4 | 9.3 | / | 10.4 | 0.7 | / | 3.1 |
NC2 | 5828 | 38.6 | / | 2.3 | 5.1 | 6.6 | / | 13.0 | 2.8 | 11.5 | 3.4 |
NC2 | 5834 | 39.0 | / | 2.4 | 3.8 | 3.0 | / | 16.0 | 4.1 | 6.3 | 1.4 |
NC2 | 5853 | 25.8 | / | 5.1 | 7.6 | 6.7 | / | 7.1 | 7.1 | 30.4 | 10.2 |
NC2 | 5879 | 15.9 | / | / | 12.1 | 12.6 | / | 34.3 | / | 9.7 | 15.4 |
NC2 | 5897 | 15.0 | / | / | 10.0 | 9.0 | / | 55.1 | / | 4.9 | 6.0 |
Lithofacies | Mineral Composition (%) | Sedimentary Facies | ||
---|---|---|---|---|
Quartz+ Pyrite+ Feldspar | Carbonate | Clay | ||
Clayey shale | 25.13 | 2.56 | 66.93 | shore swamp; tidal flat; deep water melanged accumulation shelf |
Carbonaceous shale | 20.42 | 56.86 | 12.09 | tidal flat; shallow water melanged accumulation shelf |
Siliceous shale | 81.32 | 3.65 | 11.04 | deep water melanged accumulation shelf |
Mixed shale | 38.93 | 19.98 | 28.43 | shore swamp; tidal flat; shallow water melanged accumulation shelf |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Lin, L.; Chen, L.; Yu, Y.; Li, D.; Tian, J.; Zhou, W.; He, J. Characteristics of Mineralogy, Lithofacies of Fine-Grained Sediments and Their Relationship with Sedimentary Environment: Example from the Upper Permian Longtan Formation in the Sichuan Basin. Energies 2021, 14, 3662. https://doi.org/10.3390/en14123662
Yang H, Lin L, Chen L, Yu Y, Li D, Tian J, Zhou W, He J. Characteristics of Mineralogy, Lithofacies of Fine-Grained Sediments and Their Relationship with Sedimentary Environment: Example from the Upper Permian Longtan Formation in the Sichuan Basin. Energies. 2021; 14(12):3662. https://doi.org/10.3390/en14123662
Chicago/Turabian StyleYang, Hongzhi, Liangbiao Lin, Liqing Chen, Yu Yu, Du Li, Jingchun Tian, Wen Zhou, and Jianhua He. 2021. "Characteristics of Mineralogy, Lithofacies of Fine-Grained Sediments and Their Relationship with Sedimentary Environment: Example from the Upper Permian Longtan Formation in the Sichuan Basin" Energies 14, no. 12: 3662. https://doi.org/10.3390/en14123662
APA StyleYang, H., Lin, L., Chen, L., Yu, Y., Li, D., Tian, J., Zhou, W., & He, J. (2021). Characteristics of Mineralogy, Lithofacies of Fine-Grained Sediments and Their Relationship with Sedimentary Environment: Example from the Upper Permian Longtan Formation in the Sichuan Basin. Energies, 14(12), 3662. https://doi.org/10.3390/en14123662