Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
Abstract
:1. Introduction
- 40% reduction in GHG emissions from 1990 levels by 2030, 85% reductions by 2050;
- 50% of electricity to come from renewable energy resources by 2030, 70% renewable by 2050;
- Zero carbon electric sector by 2040;
- 600 trillion Btu increase in statewide energy efficiency [34].
2. Materials and Methods
3. Resources for RNG Production in New York State
3.1. Agricultural Sources
Energy Crops | 2012 Production (Tons) | VS Content (%) | Biogas Yield (m3/ton) | Biogas Potential (m3) |
---|---|---|---|---|
Corn for grain | 2,227,126 [48] | 96.57 [56] | 325 [57] | 699,000,000 |
Corn for silage | 8,230,187 [48] | 96.57 [56] | 325 [57] | 2,580,000,000 |
Sorghum for grain | 617 [48] | 92 [58] | 334 [57] | 189,000 |
Sorghum for silage | 18,391 [48] | 92 [58] | 334 [57] | 5,650,000 |
Miscanthus | NA | 32.7 [59] | 186 [59] | NA |
Switchgrass | NA | 95.8 [60] | 191 [61] | NA |
Poplar trees | NA | 77.3 [62] | 127.2 [62] | NA |
Willow trees | NA | 97.8 [63] | 200 [64] | NA |
Total | 3.3 × 109 |
3.2. Municipal Waste Sources
4. Current Biogas and RNG Production in New York State
4.1. Agricultural Sector Use of Biogas
4.2. Waste Sector Biogas and RNG
4.3. Planned Biogas/RNG Projects in New York State
5. Discussion and Results
5.1. Anthropogenic Biogas/RNG Potential Summary for New York State
5.2. Current Biogas/RNG New York State Production Summary
6. Conclusions
- New York State collects about 10% of its potential biogas production;
- A small fraction of the current biogas production is processed to RNG, despite RNG being a technologically sound replacement for fossil natural gas;
- Energy crops can produce the most significant amount of RNG in New York State;
- Anaerobically digesting energy crops, OFMSW, and yard waste can produce nearly 80% of the potential RNG production calculated;
- About half of the RNG potential is technically feasible currently; it is also economically favored if RINs and LCFs credits can be captured;
- 20% of GHG emissions associated with fossil natural gas can be eliminated when replaced with RNG and “green” hydrogen.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Bio-CNG | Bio-Compressed Natural Gas |
CARB | California Air Resources Board |
CHP | Combined Heat and Power |
CI | Carbon Intensity |
CNG | Compressed Natural Gas |
EPA | Environmental Protection Agency |
GHG | Greenhouse Gas |
I-GIT | Institute of Gas Innovation and Technology |
LBM | Liquified Biomethane |
LCFS | Low Carbon Fuel Standard |
LNG | Liquified Natural Gas |
MSW | Municipal Solid Waste |
NREL | National Renewable Energy Laboratory |
NYS | New York State |
OFMSW | Organic Fraction of Municipal Solid Waste |
PURPA | Public Utility Regulatory Policies Act |
RECs | Renewable Energy Credits |
REF | Renewable Energy Fund |
RES | Renewable Energy Standard |
REV | Reforming the Energy Vision |
RFS2 | Renewable Fuel Standard |
RINs | Renewable Identification Numbers |
RNG | Renewable Natural Gas |
TW-h | Terawatt-hour |
USDA | United States Department of Agriculture |
VSWEF | Volatile SolidsWater Environment Federation |
WWTP | Wastewater Treatment Plant |
Appendix A. Agricultural Residues Estimate
Agricultural Crop. | 2012 Total Crop Production (Bushels/yr) [48] | Bushel Weight (lbs.) [67] | Residue to Crop Volume Ratio [67] | Dry Matter (%) [67] | Agricultural Residue | 2012 Production (Tons/yr) |
---|---|---|---|---|---|---|
Corn for grain | 87,662,512 | 56 | 1.0 | 84.5 | Corn stover | 940,956 |
Corn for silage | 8,230,187 tons/yr | Not applicable | 1.0 | 33 | Corn stover | 1358 |
Wheat | 5,377,408 | 60 | 1.35 | 96.5 | Wheat straw | 85,450 |
Barley | 338,294 | 48 | 1.2 | 85.5 | Barley straw | 3,778 |
Oat | 3,229,581 | 32 | 1.3 | 86 | Oat straw | 26,204 |
Sorghum for grain | 24,290 | 56 | 1.4 | 88 | Sorghum straw | 380 |
References
- Araújo, K. Low Carbon Energy Transitions: Turning Points in National Policy and Innovation; Oxford University: New York, NY, USA, 2017; ISBN 9780199362554. [Google Scholar]
- United States Energy Information Administration. Available online: https://www.eia.gov/energyexplained/us-energy-facts/ (accessed on 16 June 2020).
- Levi, M. Climate consequences of natural gas as a bridge fuel. Clim. Change 2013, 118, 609–623. [Google Scholar] [CrossRef]
- Pellegrini, M.; Guzzini, A.; Saccani, C. A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network. Energies 2020, 13, 5570. [Google Scholar] [CrossRef]
- Melaina, M.W.; Antonia, O.; Penev, M. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues; NREL/TP-5600-51995; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. Available online: https://www.osti.gov/servlets/purl/1219920 (accessed on 16 June 2020).
- IPCC. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed on 16 June 2020).
- Chai, X.; Tonjes, D.; Mahajan, D. Methane Emissions as Energy Reservoir: Context, Scope, Causes and Mitigation Strategies. Prog. Energy Combust. Sci. 2016, 56, 33–70. [Google Scholar] [CrossRef] [Green Version]
- Wąs, A.; Sulewski, P.; Krupin, V.; Popadynets, N.; Malak-Rawlikowska, A.; Szymańska, M.; Skorokhod, I.; Wysokiński, M. The Potential of Agricultural Biogas Production in Ukraine—Impact on GHG Emissions and Energy Production. Energies 2020, 13, 5755. [Google Scholar] [CrossRef]
- Abatzoglou, N.; Boivin, S. A review of biogas purification processes. Biofuels Bioprod. Biorefining 2009, 3, 42–71. [Google Scholar] [CrossRef]
- Bond, T.; Templeton, M.R. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 2011, 15, 347–354. [Google Scholar] [CrossRef]
- Zuzhang, X. Domestic Biogas in a Changing China: Can Biogas Still Meet the Energy Needs of China’s Rural Households? International Institute for Environment and Development: London, UK, 2013; Available online: https://pubs.iied.org/16553IIED (accessed on 16 June 2020).
- Savickis, J.; Zemite, L.; Bode, I.; Jansons, L.; Dzelzitis, E.; Koposovs, A.; Selickis, A.; Ansone, A. The Biomethane Injection into the Natural Gas Networks: The EU’s Gas Synergy Path. Latv. J. Phys. Tech. Sci. 2020, 57, 34–50. [Google Scholar] [CrossRef]
- Åhman, M. Biomethane in the transport sector—An appraisal of the forgotten option. Energy Policy 2010, 38, 208–217. [Google Scholar] [CrossRef]
- Mintz, M. Renewable Natural Gas (RNG) for Transportation; Argonne National Laboratory: Lemont, IL, USA, 2020. Available online: https://www.anl.gov/sites/www/files/2020-11/RNG_for_Transportation_FAQs.pdf (accessed on 6 June 2021).
- Moghaddam, E.A.; Ahlgren, S.; Nordberg, Å. Assessment of Novel Routes of Biomethane Utilization in a Life Cycle Perspective. Front. Bioeng. Biotechnol. 2016, 4, 89. [Google Scholar] [CrossRef] [Green Version]
- Koonaphapdeelert, S.; Aggarangsi, P.; Moran, J. Biomethane: Production and Applications; Springer Nature: Singapore, 2020; ISBN 9789811383076. [Google Scholar]
- Backman, M.; Rogulska, M. Biomethane use in Sweden. Arch. Automot. Eng. Arch. Motoryz. 2016, 71, 7–19. [Google Scholar] [CrossRef]
- Schmid, C.; Horschig, T.; Pfeiffer, A.; Szarka, N.; Thrän, D. Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries. Energies 2019, 12, 3803. [Google Scholar] [CrossRef] [Green Version]
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Stinner, W.; Schmalfuß, T.; Scheftelowitz, M.; Nelles, M.; Liebetrau, J. Current Developments in Production and Utilization of Biogas and Biomethane in Germany. Chem. Ing. Tech. 2018, 90, 17–35. [Google Scholar] [CrossRef]
- Drake, J. Is RNG a California-Only Fuel? Available online: https://www.act-news.com/news/is-rng-a-california-only-fuel/ (accessed on 6 June 2021).
- Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Wang, M.; Lee, E.; Dilbeck, M.P.; Liebelt, M.; Zhang, Q.; Ergas, S.J. Thermal pretreatment of microalgae for biomethane production: Experimental studies, kinetics and energy analysis. J. Chem. Technol. Biotechnol. 2017, 92, 399–407. [Google Scholar] [CrossRef]
- Scholz, M.; Melin, T.; Wessling, M. Transforming biogas into biomethane using membrane technology. Renew. Sustain. Energy Rev. 2013, 17, 199–212. [Google Scholar] [CrossRef]
- DeCotis, P.A. PURPA Reform Implications for Utilities and Climate Change. Nat. Gas Electr. 2019, 36, 17–20. [Google Scholar] [CrossRef]
- Taylor, M. Beyond technology-push and demand-pull: Lessons from California’s solar policy. Energy Econ. 2008, 30, 2829–2854. [Google Scholar] [CrossRef]
- Bracmort, K. The Renewable Fuel Standard (RFS): An Overview; Technical Report No. R43325; Congressional Research Service: Washington, DC, USA, 2020; Available online: https://www.everycrsreport.com/files/20200414_R43325_1981cda6b9497b16f7306b81d584cbcf91d4c801.pdf (accessed on 17 June 2020).
- Zhao, Y.; Sun, F.; Yu, J.; Cai, Y.; Luo, X.; Cui, Z.; Hu, Y.; Wang, X. Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation. Bioresour. Technol. 2018, 269, 143–152. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Available online: https://www.epa.gov/renewable-fuel-standard-program/overview-renewable-fuel-standard (accessed on 16 June 2020).
- Whistance, J.; Thompson, W.; Meyer, S. Interactions between California’s Low Carbon Fuel Standard and the National Renewable Fuel Standard. Energy Policy 2017, 101, 447–455. [Google Scholar] [CrossRef] [Green Version]
- GreenTherm. GreenThermTM: Voluntary Renewable Natural Gas Program Tehnical Confernce (19-057-T04) May 1, 2019. In Proceedings of the Voluntary Renewable Natural Gas Program Technical Conference; Salt Lake City, UT, USA, 1 May 2019. Available online: https://pscdocs.utah.gov/gas/19docs/19057T04/307955TechConfPres5-1-2019.pdf (accessed on 16 June 2020).
- California Public Utilities Commission. Available online: https://www.cpuc.ca.gov/rps/ (accessed on 17 June 2020).
- Allen, C.N. Untapped Renewable Energy Potential: Lessons for Reforming Virginia’s Renewable Energy Portfolio Standard from Texas and California. Va. Environ. Law J. 2016, 35, 117–152. [Google Scholar]
- Christensen, A.; Hobbs, B. A model of state and federal biofuel policy Feasibility assessment of the California Low Carbon Fuel Standard. Appl. Energy 2016, 169, 799–812. [Google Scholar] [CrossRef] [Green Version]
- New York State (NYS). Available online: https://climate.ny.gov/ (accessed on 5 June 2020).
- New York State Energy Research Development Authority. Available online: https://www.nyserda.ny.gov/All-Programs/Programs/Clean-Energy-Standard (accessed on 16 June 2020).
- North Carolina Clean Energy Technology Center. Available online: http://programs.dsireusa.org/system/program/detail/93 (accessed on 16 June 2020).
- New York State Department of Environmental Conservation (NYSDEC). Available online: https://www.dropbox.com/sh/hz3spt98h4d88ue/AADmNLcYxcpZQFeWUNAxGMi9a?dl=0 (accessed on 5 June 2020).
- Seiffert, M.; Kaltschmitt, M.; Miranda, J.A. The biomethane potential in Chile. Biomass Bioenergy 2009, 33, 564–572. [Google Scholar] [CrossRef]
- Piechota, G.; Igliński, B. Biomethane in Poland—Current Status, Potential, Perspective and Development. Energies 2021, 14, 1517. [Google Scholar] [CrossRef]
- Dyer, A.; Miller, A.C.; Chandra, B.; Maza, J.G.; Tran, C.; Bates, J.; Olivier, V.; Tuininga, A.R. The Feasibility of Renewable Natural Gas in New Jersey. Sustainability 2021, 13, 1618. [Google Scholar] [CrossRef]
- Eyl-Mazzega, M.-A.; Mathieu, C. Biogas and Biomethane in Europe: Lessons from Denmark, Germany, and Italy; IFRI: Paris, France, 2019; Available online: https://www.ifri.org/sites/default/files/atoms/files/mathieu_eyl-mazzega_biomethane_2019.pdf (accessed on 6 June 2021).
- Patel, S.; Tonjes, D.; Mahajan, D. Biogas potential on Long Island, New York: A quantification study. J. Renew. Sustain. Energy 2011, 3, 043118. [Google Scholar] [CrossRef]
- Holliger, C.; Fruteau de Laclos, H.; Hack, G. Methane Production of Full-Scale Anaerobic Digestion Plants Calculated from Substrate’s Biomethane Potentials Compares Well with the One Measured On-Site. Front. Energy Res. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- New York State Energy Research and Development Authority. Patterns and Trends—New York State Energy Profiles: 2002–2016; New York State Energy Research and Development Authority: Albany, NY, USA, 2019. Available online: https://www.nyserda.ny.gov/about/publications/ea-reports-and-studies/patterns-and-trends (accessed on 16 June 2020).
- Iglesias, R.; Muñoz, R.; Polanco, M.; Díaz, I.; Susmozas, A.; Moreno, A.D.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- Bhatnagar, N.; Ryan, D.; Murphy, R.; Enright, A.-M. Trace Element Supplementation and Enzyme Addition to Enhance Biogas Production by Anaerobic Digestion of Chicken Litter. Energies 2020, 13, 3477. [Google Scholar] [CrossRef]
- McCarthy, D.; Canter, L.; Del Cogliano, D. 2019 New York State Dairy Statistics Report; New York State Department of Agriculture and Markets: Albany, NY, USA, 2019. Available online: https://agriculture.ny.gov/system/files/documents/2020/09/2019dairystatisticsannualsummary.pdf (accessed on 16 June 2020).
- Vilsack, T.; Clark, C.Z.F. 2012 Census of Agriculture AC-12-A-51; United States Department of Agriculture: Washington, DC, USA, 2014. Available online: https://www.nass.usda.gov/Publications/AgCensus/2012/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf (accessed on 16 June 2020).
- PennState Extension. Available online: https://extension.psu.edu/biogas-from-manure (accessed on 16 June 2020).
- Ciborowski, P. Anaerobic Digestion of Livestock Manure for Pollution Control and Energy Production: A Feasibility Assessment; Minnesota Pollution Control Agency: St. Paul, MN, USA, 2001; Available online: https://www.pca.state.mn.us/sites/default/files/p-gen4-02.pdf (accessed on 16 June 2020).
- United States Environmental Protection Agency. Increasing Anaerobic Digester Performance with Codigestion; United States Environmental Protection Agency: Washington, DC, USA, 2012. Available online: https://www.epa.gov/sites/production/files/2014-12/documents/codigestion.pdf (accessed on 16 June 2020).
- Mukhtar, S. Poultry Production: Manure and Wastewater Management. In Encyclopedia of Animal Sciences; Marcel Dekker: New York, NY, USA, 2005; pp. 744–747. Available online: https://www.researchgate.net/profile/Saqib-Mukhtar/publication/259264250_Poultry_Production_Manure_and_Wastewater_Management/links/0c96052a9d93043929000000/Poultry-Production-Manure-and-Wastewater-Management.pdf (accessed on 16 June 2020).
- Fulhage, C.D.; Sievers, D.; Fischer, J.R. Generating Methane Gas from Manure; Stanford University: Stanford, CA, USA, 1993; Available online: http://large.stanford.edu/publications/power/references/docs/fulhage.pdf (accessed on 16 June 2020).
- United States Department of Agriculture. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEW%20YORK (accessed on 16 June 2020).
- Graham-Rowe, D. Agriculture: Beyond food versus fuel. Nature 2011, 474, S6–S8. [Google Scholar] [CrossRef] [Green Version]
- Colussi, I.; Cortesi, A.; Del Piccolo, C.; Gallo, V.; Rubesa Fernandez, A.S.; Vitanza, R. Improvement of Methane Yield from Maize Silage by a Two-stage Anaerobic Process. Chem. Eng. Trans. 2013, 32, 151–156. [Google Scholar]
- Murphy, J.; Braun, R.; Weiland, P.; Wellinger, A. Biogas from Energy Crop Digestion. Available online: http://task37.ieabioenergy.com/files/daten-redaktion/download/publications/Workshops/8/5-Energy_crops.pdf (accessed on 16 June 2020).
- Jerger, D.E.; Chynoweth, D.P.; Isaacson, H.R. Anaerobic digestion of sorghum biomass. Biomass 1987, 14, 99–113. [Google Scholar] [CrossRef]
- Whittaker, C.; Hunt, J.; Misselbrook, T.; Shield, I. How well does Miscanthus ensile for use in an anaerobic digestion plant? Biomass Bioenergy 2016, 88, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Kong, X.; Li, L.; Sun, Y.; Yuan, Z.; Zhou, X. Analysis of biogas produced from switchgrass by anaerobic digestion. Bioresources 2015, 10, 7178–7187. [Google Scholar] [CrossRef] [Green Version]
- Bélanger, G.; Savoie, P.; Parent, G.; Claessens, A.; Bertrand, A.; Tremblay, G.; Massé, D.; Gilbert, Y.; Babineau, D. Switchgrass silage for methane production as affected by date of harvest. Can. J. Plant Sci. 2012, 92, 1187–1197. [Google Scholar] [CrossRef]
- Yao, Y.; He, M.; Ren, Y.; Ma, L.; Luo, Y.; Sheng, H.; Xiang, Y.; Zhang, H.; Li, Q.; An, L. Anaerobic digestion of poplar processing residues for methane production after alkaline treatment. Bioresour. Technol. 2013, 134, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Gizińska-Górna, M.; Czekała, W.; Jóźwiakowski, K.; Lewicki, A.; Dach, J.; Marzec, M.; Pytka, A.; Janczak, D.; Kowalczyk-Juśko, A.; Listosz, A. The possibility of using plants from hybrid constructed wetland wastewater treatment plant for energy purposes. Ecol. Eng. 2016, 95, 534–541. [Google Scholar] [CrossRef]
- Frigon, J.C.; Guiot, S.R. Biomethane production from starch and lignocellulosic crops: A comparative review. Biofuels Bioprod. Biorefining 2010, 4, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Kovačić, Đ.; Kralik, D.; Rupcic, S.; Jovičić, D.; Spajić, R.; Tišma, M. Soybean Straw, Corn Stover and Sunflower Stalk as Possible Substrates for Biogas Production in Croatia: A Review. Chem. Biochem. Eng. Q. 2017, 31, 187–198. [Google Scholar] [CrossRef]
- Tian, F.; Xu, D.; Xu, X. Extruded Solid Biofuels of Rice Straw Plus Oriented Strand Board Residues at Various Proportions. Energies 2020, 13, 3468. [Google Scholar] [CrossRef]
- Millbrandt, A. A Geographic Perspective on the Current Biomass Resource Availability in the United States; NREL/TP-560-39181; National Renewable Energy Laboratory: Golden, CO, USA, 2005. Available online: https://www.nrel.gov/docs/fy06osti/39181.pdf (accessed on 16 June 2020).
- Liu, C.; Wachemo, A.C.; Tong, H.; Shi, S.; Zhang, L.; Yuan, H.; Li, X. Biogas production and microbial community properties during anaerobic digestion of corn stover at different temperatures. Bioresour. Technol. 2018, 261, 93–103. [Google Scholar] [CrossRef]
- Rajput, A.A.; Visvanathan, C. Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. J. Environ. Manag. 2018, 221, 45–52. [Google Scholar] [CrossRef]
- Schumacher, B.; Wedwitschka, H.; Hofmann, J.; Denysenko, V.; Lorenz, H.; Liebetrau, J. Disintegration in the biogas sector—Technologies and effects. Bioresour. Technol. 2014, 168, 2–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, G.; Li, W.; Li, C.; Xu, G. Enhanced biogas production from sorghum stem by co-digestion with cow manure. Int. J. Hydrog. Energy 2016, 41, 9153–9158. [Google Scholar] [CrossRef]
- New York State (NYS). Available online: https://www.dec.ny.gov/lands/85861.html (accessed on 16 June 2020).
- The National Research Council. Use of Reclaimed Water and Sludge in Food Crop Production; The National Academies Press: Washington, DC, USA, 1996; p. 192. ISBN 978-0-309-05479-9. [Google Scholar]
- Wightman, J.; Woodbury, P. Current and Potential Methane Production for Electricity and Heat from New York State Wastewater Treatment Plants; New York State Water Resources Institute: Ithaca, NY, USA, 2014; Available online: https://cpb-us-e1.wpmucdn.com/blogs.cornell.edu/dist/2/7553/files/2017/08/Wightman2014_Current-and-potential-methane-production-for-electricity-and-heat-1uqp5ry.pdf (accessed on 16 June 2020).
- Staley, B.F.; Kantner, D.L. MSW Management in the US: 2010 & 2013; Environmental Research & Education Foundation: Raleigh, NC, USA, 2016; p. 63. Available online: https://erefdn.org/product/municipal-solid-waste-management-u-s-2010-2013/ (accessed on 16 June 2020).
- DiNapoli, T. Local Governments and the Municipal Solid Waste Landfill Business; Office of the New York State Comptroller: Albany, NY, USA, 2018; p. 21. Available online: https://www.osc.state.ny.us/localgov/pubs/research/landfills-2018.pdf (accessed on 16 June 2020).
- United States Environmental Protection Agency. Advancing Sustainable Materials Management: 2016 and 2017 Tables and Figures; United States Environmental Protection Agency: Washington, DC, USA, 2019. Available online: https://www.epa.gov/sites/production/files/2019-11/documents/2016_and_2017_facts_and_figures_data_tables_0.pdf (accessed on 16 June 2020).
- Tyagi, V.K.; Fdez-Güelfo, L.A.; Zhou, Y.; Álvarez-Gallego, C.J.; Garcia, L.I.R.; Ng, W.J. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renew. Sustain. Energy Rev. 2018, 93, 380–399. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Available online: https://www.epa.gov/agstar/agstar-data-and-trends (accessed on 16 June 2020).
- Arasova, L. Anaerobic Digestion of Food Waste: Current Status, Problems and an Alternative Product; Columbia University: New York, NY, USA, 2010; Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.7158&rep=rep1&type=pdf (accessed on 16 June 2020).
- Rathje, W.L.; Murphy, C. Rubbish! The Archeaology of Garbage, 1st ed.; HarperCollins: New York, NY, USA, 1992; ISBN 0816521433. [Google Scholar]
- The Center for Paper Business and Industry Studies. Available online: http://www.paperstudies.org/millsonline/newyork.php (accessed on 16 June 2020).
- Cohen, A. Paper Jam: Foreign Competition and Declining Demand for Paper will Plague Industry Mills; Technical Report No. 32212; IBISWorld: Los Angeles, CA, USA, 2017; Available online: https://www.wpr.org/sites/default/files/32212%20Paper%20Mills%20in%20the%20US%20Industry%20Report.pdf (accessed on 16 June 2020).
- Do Carmo Precci Lopes, A.; Mudadu Silva, C.; Pereira Rosa, A.; De Ávila Rodrigues, F. Biogas production from thermophilic anaerobic digestion of kraft pulp mill sludge. Renew. Energy 2018, 124, 40–49. [Google Scholar] [CrossRef]
- Kamali, M.; Gameiro, T.; Costa, M.E.V.; Capela, I. Anaerobic digestion of pulp and paper mill wastes—An overview of the developments and improvement opportunities. Chem. Eng. J. 2016, 298, 162–182. [Google Scholar] [CrossRef]
- Veluchamy, C.; Kalamdhad, A.S. Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review. Bioresour. Technol. 2017, 245, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Priadi, C.; Wulandari, D.; Rahmatika, I.; Moersidik, S.S. Biogas Production in the Anaerobic Digestion of Paper Sludge. APCBEE Procedia 2014, 9, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Lappalainen, J.; Baudouin, D.; Hornung, U.; Schuler, J.; Melin, K.; Bjelić, S.; Vogel, F.; Konttinen, J.; Joronen, T. Sub- and Supercritical Water Liquefaction of Kraft Lignin and Black Liquor Derived Lignin. Energies 2020, 13, 3309. [Google Scholar] [CrossRef]
- Ekstrand, E.-M. Anaerobic Digestion in the Kraft Pulp and Paper Industry: Challenges and Possibilities for Implementation; Linkoping Studies in Arts and Sciences: Linkoping, Sweden, 2019; Available online: https://www.diva-portal.org/smash/get/diva2:1313936/FULLTEXT01.pdf (accessed on 19 May 2021).
- United States Environmental Protection Agency. Combined Heat and Power Catalog of Technologies; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 100–101. Available online: https://www.epa.gov/agstar/project-profile-noblehurst-farms (accessed on 16 June 2020).
- Usack, J.G.; Gerber Van Doren, L.; Posmanik, R.; Labatut, R.A.; Tester, J.W.; Angenent, L.T. An evaluation of anaerobic co-digestion implementation on New York State dairy farms using an environmental and economic life-cycle framework. Appl. Energy 2018, 211, 28–40. [Google Scholar] [CrossRef]
- Harrington, M. Crescent Duck Farm is a Busy Operation in an Enviable Niche. Newsday 2018. Available online: https://www.newsday.com/business/crescent-duck-farm-long-island-1.20626397 (accessed on 16 June 2020).
- Water Environment Federation (WEF). Available online: http://www.resourcerecoverydata.org/biogasdata.php (accessed on 16 June 2020).
- Waste360. Available online: https://www.waste360.com/gas-energy/aria-energy-completes-expansion-rng-project-seneca-meadows-landfill (accessed on 16 June 2020).
- Seneca Meadows Landfill. Available online: https://senecameadows.com/gas-to-energy/ (accessed on 16 June 2020).
- Ascher, K.; O’Connell, F. From Garbage to Energy at Fresh Kills. The New York Times, 15 September 2013. Available online: https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/15/nyregion/from-garbage-to-energy-at-fresh-kills.html(accessed on 16 June 2020).
- NYC Department of Parks & Recreation. Available online: https://www.nycgovparks.org/park-features/freshkills-park/about-the-site#milestones (accessed on 16 June 2020).
- New York State Department of Environmental Conservation. Buffalo Bioenergy Anaerobic Digestion System Facility Permit Description; DEC ID NO. 9-1468-00224; New York State Department of Environmental Conservation: New York, NY, USA, 2013. Available online: https://www.dec.ny.gov/dardata/boss/afs/permits/914680022400002.pdf (accessed on 16 June 2020).
- New York State Department of Environmental Conservation. Niagara Bioenergy Anaerobic Digestion System Facility Permit Description; DEC ID NO. 9-2940-00191; New York State Department of Environmental Conservation: New York, NY, USA, 2013. Available online: https://www.dec.ny.gov/dardata/boss/afs/permits/929400019100002.pdf (accessed on 16 June 2020).
- NYC Department of Environmental Protection. Available online: http://www.nyc.gov/html/dep/html/press_releases/13-121pr.shtml#.W-kPRJNKhPY (accessed on 16 June 2020).
- Jarnefeld, J. Benefical Uses of Paper Mill Residuals for New York State’s Recycled-Paper Mills; Technical Report No. 95-15; New York State Energy Research and Development Authority: Albany, NY, USA, 1995; Available online: https://digital.library.unt.edu/ark:/67531/metadc625205/m2/1/high_res_d/119919.pdf (accessed on 16 June 2020).
- Area Development. Available online: https://www.areadevelopment.com/newsItems/3-22-2019/long-island-power-authority-american-organic-energy-yaphank-new-york.shtml (accessed on 16 June 2020).
- The New York Times Sunday Magazine. Available online: https://www.nytimes.com/2017/02/15/magazine/the-compost-king-of-new-york.html (accessed on 18 December 2020).
- American Organic Energy. Available online: https://www.usbiopower.com/organic-energy/anaerobic-digester (accessed on 16 June 2020).
- The Coalition for Renewable Natural Gas. Available online: https://docs.google.com/spreadsheets/d/1CpLTd1Yya4qQzUpWYtKMUGW1BlMmn-Jrj3uErd8lJ7A/edit#gid=0 (accessed on 16 June 2020).
- Times Hudson Valley. Available online: http://timeshudsonvalley.com/stories/taylor-biomass-facility-gains-tier-1-status,3527? (accessed on 16 June 2020).
- Jensen, J. Biomethane for Transportation: Opportunities for Washington State; Washington State University Extension Energy Program: Spokane, WA, USA, 2011; Available online: https://research.libraries.wsu.edu/xmlui/bitstream/handle/2376/5952/Biomethane_For_Transportation_WWCleanCities.pdf?sequence=1&isAllowed=y (accessed on 6 June 2021).
- Novarino, D.; Zanetti, M.C. Anaerobic digestion of extruded OFMSW. Bioresour. Technol. 2012, 104, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Biomass Magazine. Available online: http://biomassmagazine.com/articles/17518/rng-helps-reach-carbon-negative-milestone-in-california (accessed on 6 June 2021).
- Gladstein, C.; Patrick, C. An Assessment: California’s In-State RNG Supply for Transportation 2020–2024; Gladstein Neandross & Associates: Santa Monica, CA, USA, 2020; Available online: https://cdn.gladstein.org/pdfs/whitepapers/report-assesment-california-in-state-rng.pdf (accessed on 6 June 2021).
Agricultural Residues | 2012 Production (Tons) | VS Content (%) | Biogas Yield (m3/ton) | Biogas Potential (m3) |
---|---|---|---|---|
Corn stover | 942,314 | 90 [67] | 420 [68] | 356,000,000 |
Wheat straw | 85,450 | 94 [69] | 400 [27] | 32,000,000 |
Barley straw | 3778 | 97 [70] | 230 [71] | 843,000 |
Oat straw | 26,204 | 86 [27] | 670 [27] | 15,000,000 |
Sorghum straw | 308 | 92 [71] | 330 [57] | 115,000 |
Total | 4 × 108 |
Feedstock | Potential Biogas Production (m3) | Potential RNG Production (m3) |
---|---|---|
Dairy Manure | 3 × 108 | 1.2 × 108 |
Poultry Manure | 1 × 107 | 4 × 106 |
Energy Crops | 3.3 × 109 | 1.3 × 109 |
Other Agricultural Residues | 4 × 108 | 1.6 × 108 |
Total Agricultural Output | 4 × 109 | 1.6 × 109 |
Wastewater Sludge | 5.5 × 107 | 2.2 × 107 |
Landfilled MSW | 5 × 108 | 3 × 108 |
Other Food Waste | 2.2 × 108 | 8.8 × 107 |
Currently Composted Yard Waste | 5 × 108 | 2 × 108 |
Paper Mill Sludge | 4 × 107 | 1.6 × 107 |
Total Wastes Output | 1.3 × 109 | 6.3 × 108 |
Total Anthropogenic Sources | 5.3 × 109 | 2.2 × 109 |
Feedstock | Current Biogas Production (m3) | Current RNG Production (m3) | Potential RNG Production (m3) |
---|---|---|---|
Dairy Manure | 2 × 107 | 1.2 × 108 | |
Poultry Manure | 9 × 105 | 4 × 106 | |
Sum of Agricultural Output | 2 × 107 | 1.2 × 108 | |
Wastewater Sludge | 4 × 106 | 2.2 × 107 | |
Landfills | 4 × 108 | 2 × 107 | 3 × 108 |
Food Waste | 2 × 107 | 8.8 × 107 | |
Sum of Wastes Output | 4 × 108 | 2 × 107 | 4.1 × 108 |
Sum of Anthropogenic Sources | 4.2 × 108 | 2 × 107 | 5.3 × 108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taboada, S.; Clark, L.; Lindberg, J.; Tonjes, D.J.; Mahajan, D. Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State. Energies 2021, 14, 3834. https://doi.org/10.3390/en14133834
Taboada S, Clark L, Lindberg J, Tonjes DJ, Mahajan D. Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State. Energies. 2021; 14(13):3834. https://doi.org/10.3390/en14133834
Chicago/Turabian StyleTaboada, Stephanie, Lori Clark, Jake Lindberg, David J. Tonjes, and Devinder Mahajan. 2021. "Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State" Energies 14, no. 13: 3834. https://doi.org/10.3390/en14133834
APA StyleTaboada, S., Clark, L., Lindberg, J., Tonjes, D. J., & Mahajan, D. (2021). Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State. Energies, 14(13), 3834. https://doi.org/10.3390/en14133834