Spatiotemporal Patterns and Influencing Mechanism of Urban Residential Energy Consumption in China
Abstract
:1. Introduction
2. Methodology and Data
2.1. Kernel Density Estimation of URE
2.2. Regional Inequality of URE
2.3. GDIM Decomposition
2.4. Decoupling Model
3. Variables and Data Sources
4. Results and Discussion
4.1. Spatiotemporal Patterns of China’s Urban Residential Energy Consumption
4.1.1. Distribution Dynamic Evolution
4.1.2. Regional Inequalities
4.2. Analysis of the Influencing Factors of URE through GDIM Decomposition
4.2.1. National Decomposition Results
4.2.2. Provincial Decomposition Results
4.3. Analysis of the Decoupling Relationship between Urban Residential Energy Consumption and Residential Income
4.3.1. National Analysis
4.3.2. Provincial Analysis
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, F.; Yu, B.; Hua, Y.; Zhang, S.; Wang, Y. A Comparative Analysis of Residential Energy Consumption in Urban and Rural China: Determinants and Regional Disparities. Int. J. Environ. Res. Public Health 2018, 15, 2507. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Yu, B.; Hadachin, T.; Dai, Y.; Wang, Y.; Zhang, S.; Long, R. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 2018, 129, 187–201. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J.; Siwiec, D.; Ulewicz, R.; Bindzár, P. Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential. Energies 2020, 13, 6643. [Google Scholar] [CrossRef]
- Bindzar, P.; Sang, S.; Gasanov, E.; Aliyarov, R. Sustainable Development as a Global Trend and an Economic Priority for the Nation; EDP Sciences: Les Ulis, France, 2018; p. 04033. [Google Scholar]
- Ulewicz, R.; Siwiec, D.; Pacana, A.; Tutak, M.; Brodny, J. Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies 2021, 14, 2386. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Lin, Y.; Li, Q. The impact of urbanization on China′s residential energy consumption. Struct. Chang. Econ. Dyn. 2019, 49, 170–182. [Google Scholar] [CrossRef]
- Fan, J.-L.; Zhang, Y.-J.; Wang, B. The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis. Renew. Sustain. Energy Rev. 2017, 75, 220–233. [Google Scholar] [CrossRef]
- EIA. International Energy Outlook 2019; EIA: Washington, DC, USA, 2019. [Google Scholar]
- Zhao, X.; Li, N.; Ma, C. Residential energy consumption in urban China: A decomposition analysis. Energy Policy 2012, 41, 644–653. [Google Scholar] [CrossRef]
- Congress, N.N.P.s. The Fourteenth Five-Year Plan. Available online: http://www.beijing.gov.cn/zhengce/zhengcefagui/202103/t20210313_2306780.html (accessed on 13 March 2021).
- Pablo-Romero, M.; Sánchez-Braza, A. Residential energy environmental Kuznets curve in the EU-28. Energy 2017, 125, 44–54. [Google Scholar] [CrossRef]
- Miao, L. Examining the impact factors of urban residential energy consumption and CO2 emissions in China–Evidence from city-level data. Ecol. Indic. 2017, 73, 29–37. [Google Scholar] [CrossRef]
- Sardianou, E. Estimating energy conservation patterns of Greek households. Energy Policy 2007, 35, 3778–3791. [Google Scholar] [CrossRef]
- Xie, L.; Yan, H.; Zhang, S.; Wei, C.; Fleisher, B.M.; Huang, K.; Lovely, M.E.; Wen, Y.; Zhang, X.; Zhu, X. Does urbanization increase residential energy use? Evidence from the Chinese residential energy consumption survey 2012. China Econ. Rev. 2020, 59, 101374. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. Urbanization impact on residential energy consumption in China: The roles of income, urbanization level, and urban density. Environ. Sci. Pollut. Res. 2019, 26, 3542–3555. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, J.; Zhou, K.; Fan, J.; Kwan, M.P. Does urbanization lead to less residential energy consumption? A comparative study of 136 countries. Energy 2020, 202, 117765. [Google Scholar] [CrossRef]
- Aydin, E.; Brounen, D. The impact of policy on residential energy consumption. Energy 2019, 169, 115–129. [Google Scholar] [CrossRef]
- Filippini, M.; Alberini, A. Response of Residential Electricity Demand to Price: The Effect of Measurement Error. Energy Econ. 2010, 33, 889–895. [Google Scholar]
- Moral-Carcedo, J.; Vicens-Otero, J. Modelling the non-linear response of Spanish electricity demand to temperature variations. Energy Econ. 2005, 27, 477–494. [Google Scholar] [CrossRef]
- Liddle, B. Consumption-Driven Environmental Impact and Age Structure Change in OECD Countries: A Cointegration-STIRPAT Analysis. Demogr. Res. 2011, 24, 749–770. [Google Scholar] [CrossRef] [Green Version]
- Karatasou, S.; Santamouris, M. Socio-economic status and residential energy consumption: A latent variable approach. Energy Build. 2019, 198, 100–105. [Google Scholar] [CrossRef]
- Zhao, X.G.; Li, P.L. Is the energy efficiency improvement conducive to the saving of residential electricity consumption in China? J. Clean. Prod. 2019, 249, 119339. [Google Scholar]
- Yu, B.; Yang, X.; Zhao, Q.; Tan, J. Causal Effect of Time-Use Behavior on Residential Energy Consumption in China. Ecol. Econ. 2020, 175, 106706. [Google Scholar] [CrossRef]
- Dong, F.; Yu, B.; Pan, Y. Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: Evidence from China. J. Clean. Prod. 2019, 223, 759–771. [Google Scholar] [CrossRef]
- Oliveira-De Jesus, D.; Paulo, M.; Galvis, J.J.; Rojas-Lozano, D.; Yusta, J.M. Multitemporal LMDI Index Decomposition Analysis to Explain the Changes of ACI by the Power Sector in Latin America and the Caribbean between 1990–2017. Energies 2020, 13, 2328. [Google Scholar] [CrossRef]
- Fang, D.; Yu, B. Driving mechanism and decoupling effect of PM2.5 emissions: Empirical evidence from China’s industrial sector. Energy Policy 2021, 149, 112017. [Google Scholar] [CrossRef]
- González, P.F.; Landajo, M.; Presno, M. Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27. Energy Policy 2014, 68, 576–584. [Google Scholar] [CrossRef]
- Lin, Y.; Chong, C.; Ma, L.; Li, Z.; Ni, W. Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015. Energies 2021, 14, 2304. [Google Scholar] [CrossRef]
- Yu, B.; Fang, D.; Dong, F. Study on the evolution of thermal power generation and its nexus with economic growth: Evidence from EU regions. Energy 2020, 205, 118053. [Google Scholar] [CrossRef]
- Kong, L.; Mu, X.; Hu, G. A decomposing analysis of productive and residential energy consumption in Beijing. Energy 2021, 226, 120413. [Google Scholar]
- Zhang, M.; Bai, C. Exploring the influencing factors and decoupling state of residential energy consumption in Shandong. J. Clean. Prod. 2018, 194, 253–262. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, J.; Devlin, A.T.; Zhou, Y.; Xie, D.; Ju, M. Decoupling and Decomposition Analysis of Residential Energy Consumption from Economic Growth during 2000–2017: A Comparative Study of Urban and Rural Guangdong, China. Energies 2020, 13, 4461. [Google Scholar] [CrossRef]
- Nie, H.-g.; Kemp, R.; Xu, J.-h.; Vasseur, V.; Fan, Y. Drivers of urban and rural residential energy consumption in China from the perspectives of climate and economic effects. J. Clean. Prod. 2018, 172, 2954–2963. [Google Scholar] [CrossRef]
- Yu, B.; Fang, D. Decoupling economic growth from energy-related PM2.5 emissions in China: A GDIM-based indicator decomposition. Ecol. Indic. 2021, 127, 107795. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation: For Statistics and Data Analysis; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Pol. 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Pan, Y.; Li, Y.; Zhang, S. How public and government matter in industrial pollution mitigation performance: Evidence from China. J. Clean. Prod. 2021, 306, 127009. [Google Scholar] [CrossRef]
State | Definition | |||
---|---|---|---|---|
RD | Recessive decoupling | |||
WD | Weak decoupling | |||
SD | Strong decoupling | |||
END | Expansive negative decoupling | |||
WND | Weak negative decoupling | |||
SND | Strong negative decoupling |
Symbols | Indicators | Definitions | Data Source |
---|---|---|---|
URE | Absolute indicator | Urban residential energy consumption | China Energy Statistical Yearbook |
P | Absolute indicator | Urban population | China Statistical Yearbook |
I | Absolute indicator | Urban residential income | China Statistical Yearbook |
A | Absolute indicator | Urban residential area | China Urban Construction Statistical Yearbook |
EP | Relative indicator | Urban residential energy consumption per capita | China Energy Statistical Yearbook, China Statistical Yearbook |
EI | Relative indicator | The ratio of residential energy consumption to income | China Energy Statistical Yearbook, China Statistical Yearbook |
EA | Relative indicator | The ratio of residential energy consumption to total residential area | China Energy Statistical Yearbook, China Urban Construction Statistical Yearbook |
IP | Relative indicator | Disposable income per capita | China Statistical Yearbook |
DEN | Relative indicator | The ratio of urban population to total residential area | China Urban Construction Statistical Yearbook, China Statistical Yearbook |
Period | State | |||
---|---|---|---|---|
2007–2008 | 0.100 | 0.131 | 0.763 | WD |
2008–2009 | 0.075 | 0.109 | 0.683 | WD |
2009–2010 | 0.179 | 0.172 | 1.040 | END |
2010–2011 | 0.091 | 0.119 | 0.770 | WD |
2011–2012 | 0.100 | 0.116 | 0.865 | WD |
2012–2013 | −0.070 | 0.093 | −0.753 | SD |
2013–2014 | 0.056 | 0.105 | 0.532 | WD |
2014–2015 | 0.072 | 0.088 | 0.814 | WD |
2015–2016 | 0.054 | 0.091 | 0.590 | WD |
2016–2017 | 0.070 | 0.094 | 0.749 | WD |
2017–2018 | 0.073 | 0.083 | 0.881 | WD |
Provinces | 2007–2010 | 2011–2015 | 2016–2018 | 2007–2018 |
---|---|---|---|---|
Beijing | WD | WD | WD | WD |
Tianjin | WD | WD | WD | WD |
Hebei | END | WD | WD | WD |
Shanxi | END | WD | SD | WD |
Inner Mongolia | END | SD | END | WD |
Liaoning | WD | WD | WD | WD |
Jilin | END | SD | WD | WD |
Heilongjiang | END | SD | END | WD |
Jiangsu | WD | WD | END | WD |
Zhejiang | WD | WD | WD | WD |
Anhui | WD | WD | END | WD |
Fujian | WD | WD | WD | WD |
Jiangxi | WD | WD | END | WD |
Shandong | END | SD | END | WD |
Henan | WD | WD | END | WD |
Hubei | WD | WD | END | WD |
Hunan | END | END | WD | END |
Guangdong | WD | WD | WD | WD |
Guangxi | WD | WD | SD | WD |
Hainan | END | WD | WD | END |
Chongqing | WD | END | WD | WD |
Sichuan | WD | WD | WD | WD |
Guizhou | END | WD | WD | WD |
Yunnan | WD | WD | WD | WD |
Shaanxi | WD | WD | WD | WD |
Gansu | WD | WD | END | WD |
Qinghai | SD | WD | WD | WD |
Ningxia | WD | WD | SD | WD |
Xinjiang | END | WD | WD | WD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Hu, J.; Yu, B. Spatiotemporal Patterns and Influencing Mechanism of Urban Residential Energy Consumption in China. Energies 2021, 14, 3864. https://doi.org/10.3390/en14133864
Li Q, Hu J, Yu B. Spatiotemporal Patterns and Influencing Mechanism of Urban Residential Energy Consumption in China. Energies. 2021; 14(13):3864. https://doi.org/10.3390/en14133864
Chicago/Turabian StyleLi, Qiucheng, Jiang Hu, and Bolin Yu. 2021. "Spatiotemporal Patterns and Influencing Mechanism of Urban Residential Energy Consumption in China" Energies 14, no. 13: 3864. https://doi.org/10.3390/en14133864
APA StyleLi, Q., Hu, J., & Yu, B. (2021). Spatiotemporal Patterns and Influencing Mechanism of Urban Residential Energy Consumption in China. Energies, 14(13), 3864. https://doi.org/10.3390/en14133864