Response Identification in a Vibration Energy-Harvesting System with Quasi-Zero Stiffness and Two Potential Wells
Abstract
:1. Introduction
2. The Model
3. Results of Simulations and Recurrence Analysis
3.1. Analyses Using Phase Space Trajectories and Poincaré Maps
3.2. Recurrence Plots (RPs) and Recurrence Quantification Analysis (RQA)
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giri, A.M.; Ali, S.F.; Arockiarajan, A. Dynamics of symmetric and asymmetric potential well-based piezoelectric harvesters: A comprehensive review. J. IntelI. Mat. Syst. Struc. 2020. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiang, H.; Shi, Z.; Zhan, J. Experimental investigation on piezoelectric energy harvesting from vehicle-bridge coupling vibration. Ener. Convers. Manag. 2018, 163, 69–79. [Google Scholar] [CrossRef]
- Keshmiri, A.; Deng, X.; Wu, N. New energy harvester with embedded piezoelectric stacks. Compos. Part. B Eng. 2019, 163, 303–313. [Google Scholar] [CrossRef]
- Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C. Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 2008, 96, 1457–1486. [Google Scholar] [CrossRef] [Green Version]
- Iannacci, J. Microsystem based Energy Harvesting (EH-MEMS): Powering pervasivity of the Internet of Things (IoT)—A review with focus on mechanical vibrations. J. King Saud Univ. Sci. 2019, 31, 66–74. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiang, H.; Shi, Z.; Zhan, J. Piezoelectric Energy Harvesting; John Wiley and Sons: Chichester, UK, 2011. [Google Scholar] [CrossRef]
- Sodano, H.A.; Park, G.; Inman, D.J. Estimation of electric charge output for piezoelectric energy harvesting. Strain 2004, 40, 49–58. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy Harvesting Vibration Sources for Microsystems Applications. Meas. Sci. Technol. 2006, 17, R175–R195. [Google Scholar] [CrossRef]
- Ferrari, M.; Ferrari, V.; Guizzetti, M. Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sens. Actuators A Phys. 2008, 142, 329–335. [Google Scholar] [CrossRef]
- Erturk, A.; Hoffmann, J.; Inman, D.J. A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 2009, 94, 254102. [Google Scholar] [CrossRef]
- Cottone, F.; Vocca, H.; Gammaitoni, L. Nonlinear energy harvesting. Phys. Rev. Lett. 2009, 102, 080601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Syta, A.; Litak, G.; Zhou, S.; Inman, D.J.; Chen, Y. Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur. Phys. J. Plus 2015, 130, 103. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Cao, J.; Litak, G.; Lin, J. Numerical analysis and experimental verification of broadband tristable energy harvesters. Tm-Tech. Mess. 2018, 85, 521–532. [Google Scholar] [CrossRef]
- Huang, D.; Zhou, S.; Litak, G. Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit. Nonlin. Dyn. 2019, 97, 663–677. [Google Scholar] [CrossRef]
- Huang, D.; Zhou, S.; Litak, G. Theoretical analysis of multi-stable energy harvesters with high order stiffness terms. Comm. Nonl. Sci. Numer. Simul. 2019, 69, 270–286. [Google Scholar] [CrossRef]
- Huguet, T.; Lallart, M.; Badel, A. Orbit jump in bistable energy harvesters through buckling level modification. Mech. Syst. Sign. Process. 2019, 128, 202–215. [Google Scholar] [CrossRef]
- Huguet, T.; Badel, A.; Lallart, M. Parametric analysis for optimized piezoelectric bistable vibration energy harvesters. Smart Mater. Struct. 2019, 28, 115009. [Google Scholar] [CrossRef]
- Caban, J.; Litak, G.; Ambrożkiewicz, B.; Gardyński, L.; Stączek, P.; Wolszczak, P. Possibilities of energy harvesting from the suspension system of the internal combustion engine in the vehicle. Communications 2021, 23, B106–B116. [Google Scholar] [CrossRef]
- Litak, G.; Margielewicz, J.; Gaska, D.; Wolszczak, P.; Zhou, S. Multiple solutions of the tristable energy harvester. Energies 2021, 14, 1284. [Google Scholar] [CrossRef]
- Litak, G.; Ambrożkiewicz, B.; Wolszczak, P. Dynamics of a nonlinear energy harvester with subharmonic responses. J. Phys. Conf. Ser. 2021, 1736, 012032. [Google Scholar] [CrossRef]
- Wang, W.; Cao, J.; Bowen, C.R.; Litak, G. Nonlinear response identification of an asymmetric bistable harvester excited at different bias angles by multiscale entropy and recurrence plot. J. Comput. Nonlinear Dynam. 2020, 15, 091004. [Google Scholar] [CrossRef]
- Eckmann, J.; Oliffson, K.; Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett. 1987, 5, 973–977. [Google Scholar] [CrossRef] [Green Version]
- Webber, C.L.; Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 1984, 76, 965–973. [Google Scholar] [CrossRef]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Webber, C.L.; Marwan, N. Mathematical and Computational Foundations of Recurrence Quantifications. In Recurrence Quantification Analysis; Webber, C.L., Marwan, N., Eds.; Springer: Cham, Switzerland, 2015; pp. 3–43. [Google Scholar] [CrossRef]
- Zbilut, J.P.; Webber, C.L. Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 1991, 171, 199–203. [Google Scholar] [CrossRef]
- Rysak, A.; Gregorczyk, M.; Zaprawa, P.; Tra̧bka-Wiȩcław, K. Search for optimal parameters in a recurrence analysis of the Duffing system with varying damping. Commun. Nonlin. Scien. Numer. Simul. 2020, 84, 105192. [Google Scholar] [CrossRef]
- Marwan, N. Cross Recurrence Plot Toolbox for Matlab; Ver. 5.15, Release 28.10, 2011. Available online: http://tocsy.pik-potsdam.de (accessed on 6 May 2021).
- Mann, B.; Sims, N. Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vibr. 2009, 319, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Liao, W.-H. Impedance matching for improving piezoelectric energy harvesting systems. Proc. SPIE 2010, 7643, 76430K. [Google Scholar] [CrossRef]
- Koszewnik, A.; Grzes, P.; Walendziuk, W. Mechanical and electrical impedance matching in a piezoelectric beam for Energy Harvesting. Eur. Phys. J. Spec. Top. 2015, 224, 2719–2731. [Google Scholar] [CrossRef]
- Webber, C.; Marwan, N. Recurrence Quantification Analysis. Theory Best Pract. 2015. [Google Scholar] [CrossRef]
- Marwan, N.; Wessel, N.; Meyerfeldt, U.; Schirdewan, A.; Kurths, J. Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E 2002, 66, 026702. [Google Scholar] [CrossRef] [Green Version]
- Iwaniec, J.; Kurowski, P. Experimental verification of selected methods sensitivity to damage size and location. J. Vibr. Contr. 2017, 23, 1133–1151. [Google Scholar] [CrossRef]
- Iwaniec, J. Investigation of selected mechanical systems by recurrence plots method. Int. J. Struc. Stab. Dyn. 2013, 13, 1340008. [Google Scholar] [CrossRef]
- Iwaniec, J.; Litak, G.; Bernardini, D.; Savi, M. Recurrence analysis of regular and chaotic motions of a superelastic shape memory oscillator. ITM Web Conf. 2017, 15, 05013. [Google Scholar] [CrossRef] [Green Version]
- Litak, G.; Sawicki, J.; Kasperek, R. Cracked rotor detection by recurrence plots. Nondestruct. Test. Eval. 2009, 24, 347–351. [Google Scholar] [CrossRef]
Case Annotation | Classification |
---|---|
A | small orbit intra-well solution |
B | medium orbit intra-well solution |
C | large orbit inter-well solution |
D | large orbit non-periodic (chaotic solution) |
E | large orbit inter-well solution |
F | large orbit non-periodic (chaotic solution) |
G | medium orbit intra-well solution |
H | large orbit sub-harmonic solution |
I | large orbit non-periodic (chaotic solution) |
J | large orbit sub-harmonic solution |
K | medium orbit intra-well solution |
L | large orbit sub-harmonic solution |
M | large orbit sub-harmonic solution |
N | small orbit harmonic non-resonant solution |
O | large orbit sub-harmonic solution |
P | large orbit sub-harmonic solution |
Point | Number of Loops | Periodicity | La | TT | Vmax | T2 | RTE | Clust | Trans |
---|---|---|---|---|---|---|---|---|---|
A | sL1 | P1 | 38.56 | 9.68 | 11 | 96.91 | 0.127 | 0.749 | 0.747 |
B | sL2 | P1 | 15.97 | 6.53 | 11 | 63.01 | 0.655 | 0.665 | 0.663 |
C | L1 | P1 | 107.20 | 9.69 | 11 | 96.93 | 0.100 | 0.740 | 0.737 |
D | L > 10 | P > 10 | 28.53 | 29.57 | 206 | 295.80 | 0.850 | 0.625 | 0.624 |
E | L1 | P1 | 106.55 | 9.68 | 11 | 96.93 | 0.100 | 0.740 | 0.738 |
F | L > 10 | P > 10 | 35.28 | 27.20 | 115 | 272.07 | 0.777 | 0.647 | 0.645 |
G | sL3 | P3 | 60.22 | 17.58 | 32 | 172.63 | 0.673 | 0.682 | 0.680 |
H | L2 | P6 | 164.01 | 27.25 | 34 | 273.13 | 0.434 | 0.730 | 0.728 |
I | L > 10 | P > 10 | 30.05 | 24.21 | 177 | 242.29 | 0.712 | 0.637 | 0.635 |
J | L2 | P4 | 137.43 | 18.68 | 25 | 187.27 | 0.431 | 0.740 | 0.738 |
K | L4 | P1 | 56.97 | 19.87 | 39 | 197.75 | 0.741 | 0.667 | 0.665 |
L | L1 | P3 | 287.12 | 27.22 | 31 | 272.84 | 0.243 | 0.739 | 0.737 |
M | L1 | P2 | 152.85 | 18.66 | 21 | 187.17 | 0.220 | 0.741 | 0.739 |
N | sL1 | P1 | 186.87 | 9.67 | 11 | 96.90 | 0.126 | 0.737 | 0.735 |
O | L6 | P2 | 40.72 | 17.72 | 35 | 176.35 | 0.747 | 0.701 | 0.699 |
P | L9 | P3 | 104.23 | 27.31 | 51 | 273.65 | 0.480 | 0.647 | 0.645 |
Point | La | TT | Vmax | T2 | RTE | Clust | Trans |
---|---|---|---|---|---|---|---|
A | 1687.31 | 0 | 0 | 103.76 | 0.025 | 0.993 | 0.962 |
B | 870.25 | 2.00 | 2 | 102.87 | 0.029 | 0.990 | 0.961 |
C | 694.40 | 2.00 | 2 | 102.89 | 0.030 | 0.986 | 0.957 |
D | 8.82 | 6.52 | 31 | 660.66 | 0.707 | 0.600 | 0.582 |
E | 694.80 | 2.00 | 2 | 102.89 | 0.030 | 0.986 | 0.957 |
F | 10.35 | 5.68 | 28 | 573.32 | 0.659 | 0.580 | 0.563 |
G | 120.38 | 3.02 | 4 | 274.39 | 0.124 | 0.735 | 0.713 |
H | 43.77 | 3.29 | 7 | 297.80 | 0.409 | 0.675 | 0.654 |
I | 9.54 | 5.57 | 31 | 562.57 | 0.671 | 0.594 | 0.576 |
J | 52.90 | 3.78 | 5 | 355.33 | 0.140 | 0.655 | 0.635 |
K | 38.65 | 3.71 | 5 | 339.36 | 0.210 | 0.652 | 0.633 |
L | 518.36 | 2.96 | 3 | 275.73 | 0.077 | 0.750 | 0.726 |
M | 41.27 | 2.05 | 3 | 199.35 | 0.101 | 0.339 | 0.328 |
N | 430.37 | 2.00 | 2 | 102.89 | 0.034 | 0.971 | 0.942 |
O | 20.20 | 3.65 | 7 | 330.62 | 0.527 | 0.667 | 0.647 |
P | 94.61 | 6.63 | 11 | 685.11 | 0.223 | 0.716 | 0.693 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwaniec, J.; Litak, G.; Iwaniec, M.; Margielewicz, J.; Gąska, D.; Melnyk, M.; Zabierowski, W. Response Identification in a Vibration Energy-Harvesting System with Quasi-Zero Stiffness and Two Potential Wells. Energies 2021, 14, 3926. https://doi.org/10.3390/en14133926
Iwaniec J, Litak G, Iwaniec M, Margielewicz J, Gąska D, Melnyk M, Zabierowski W. Response Identification in a Vibration Energy-Harvesting System with Quasi-Zero Stiffness and Two Potential Wells. Energies. 2021; 14(13):3926. https://doi.org/10.3390/en14133926
Chicago/Turabian StyleIwaniec, Joanna, Grzegorz Litak, Marek Iwaniec, Jerzy Margielewicz, Damian Gąska, Mykhaylo Melnyk, and Wojciech Zabierowski. 2021. "Response Identification in a Vibration Energy-Harvesting System with Quasi-Zero Stiffness and Two Potential Wells" Energies 14, no. 13: 3926. https://doi.org/10.3390/en14133926
APA StyleIwaniec, J., Litak, G., Iwaniec, M., Margielewicz, J., Gąska, D., Melnyk, M., & Zabierowski, W. (2021). Response Identification in a Vibration Energy-Harvesting System with Quasi-Zero Stiffness and Two Potential Wells. Energies, 14(13), 3926. https://doi.org/10.3390/en14133926