Modelling Morphological Changes and Migration of Large Sand Waves in a Very Energetic Tidal Environment: Banks Strait, Australia
Abstract
:1. Introduction
2. Morphological Set Up
2.1. Survey of Banks Strait
2.1.1. Multi-Beam/Bottom Grab/Sediment Traps
2.1.2. Penetrometer
2.1.3. Sand Waves Area and Methods for Analysis
2.2. Numerical Model
2.3. Hydrodynamic Model
2.3.1. Validation of the Hydrodynamic Model
2.3.2. Estimation of the Residual current
3. Results
3.1. Dynamics of the Sand Waves South of Clarke Island
3.2. Reference Scenario
3.3. Sensitivity Tests: Morphology
3.3.1. Influence of the Median Grain Size (d50)
3.3.2. Grain Size Distribution
3.3.3. Layer of Thickness
3.3.4. Sorting
3.3.5. Bed Friction
3.4. Sensitivity Tests: Tides & Waves, Pure Current
3.5. Sensitivity Tests: Residual Current
3.6. Summary and Recommendations
3.6.1. Summary of Sensitivity Experiments
3.6.2. Recommendations for Future Field Work
3.6.3. Recommendations for Numerical Modelling
- Constant grain size identified as the most typical for the area considered based on the Wentworth scale/ISO 14688 [85].
- Optimized value of sediment sorting of sediment (if a large set of sediment samples is available).
- Infinite supply for the layer of thickness for a first approximation.
- Spatial distribution of bed friction coefficient (if a large set of in situ data is available).
- The site’s exposure to waves should be assessed when analysing sediment transport, especially in the presence of bedforms, such as sand waves. If the wave–current interaction is important, wave forcing or a coupled wave/current model should be considered.
- Ocean circulation forcing at the boundaries, if a larger model is available.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADCP | Acoustic Doppler Current Profiler |
AHS | Australian Hydrography Service |
ARENA | Australian Renewable Energy Agency |
AUSTEn | Australian Tidal Energy |
CSIRO | Commonwealth Scientific and Industrial Research Organisation |
DAV | Depth Average Velocities |
EAC | East Australian Current |
EF | Engelund and Fredsøe |
GA | Geoscience Australia |
M | Manning number |
SASW | Sub-Antarctic Surface Water |
SB | Sub-Bottom |
SUF | Speed Up Factor |
SW | Sand Waves |
VR | Van Rijn |
Appendix A
Latitude | Longitude | Date | Mean Grain Size | Wentworth [51] Classification | |
---|---|---|---|---|---|
G1/ ST_C1 | −40.6727 | 148.2388 | 6 December 2019–16 February 2019 | 671 µm | CS |
G2 | −40.69005 | 148.1296 | 8 December 2018 | 1087 µm | VCS |
G6 | −40.6354 | 148.0332 | 10 December 2018 | 1390 µm | VCS |
G9 | −40.59549 | 148.1606 | 10 December 2018 | 958 µm | CS |
G10 | −40.60083 | 148.2083 | 10 December 2018 | 882 µm | CS |
G11 | −40.68528 | 148.089 | 10 December 2018 | 1388 µm | VCS |
G12 | −40.75377 | 148.118 | 10 December 2018 | 415 µm | MS |
ST_CW2 | −40.701 | 148.2013 | 12 July 2018–7 December 2018 | 504 µm | CS |
ST_CW4 | −40.7296 | 148.345 | 13 July 2018–7 December 2018 | 595 µm | CS |
ST_CW1 | −40.5294 | 148.0568 | 12 July 2018–12 December 2018 | 1368 µm | VCS |
ST_Swan1 | −40.68815 | 148.1228 | 6 December 2019–16 February 2019 | 584 µm | CS |
ST_Swan2 | −40.68788 | 148.1205 | 6 December 2018–8 December 2018 | 718 µm | CS |
Mud% | Sand% | Gravel% | Sediment Type | |
---|---|---|---|---|
G1/ST_C1 | / | 85 | 14 | gravelly Sand |
G2 | / | 89 | 11 | gravelly Sand |
G6 | / | 59 | 41 | sandy Gravel |
G9 | / | 88 | 12 | gravelly Sand |
G10 | / | 88 | 12 | gravelly Sand |
G11 | / | 68 | 32 | sandy Gravel |
G12 | / | 100 | 0.2 | Sand |
ST_CW2 | / | 98 | 2 | slighty gravelly Sand |
ST_CW4 | / | 97 | 3 | slighty gravelly Sand |
ST_CW1 | / | 67 | 33 | sandy Gravel |
ST_Swan1 | / | 96 | 4 | slighty gravelly Sand |
ST_Swan2 | / | 88 | 12 | gravelly Sand |
2018 | 1966 | |
---|---|---|
G6 | sandy Gravel | gravelly Sand |
G11 | sandy Gravel | sandy Gravel |
G12 | Sand | Sand |
Name Station | Type of Instrument | Longitude | Latitude | Depth(m) | Date of Deployment | End of Data Collected |
---|---|---|---|---|---|---|
CW2 | RDI Sentinel V50 500 kHz | 148.10188 | −40.5848 | 46.47 | 22/03/2018 | 11/07/2018 |
C1 | RDI Workshorse 300 kHz | 148.23882 | −40.6727 | 57.94 | 17/03/2018 | 10/07/2018 |
CW3 | Nortek AWAC 1 MHz | 148.07778 | −40.5454 | 34.95 | 22/03/2018 | 16/06/2018 |
CW4 | Nortek AWAC 1 MHz | 148.09241 | −40.6664 | 30.67 | 15/03/2018 | 09/06/2018 |
CWTb1 | Nortek Signature 500 kHz | 148.22626 | −40.6672 | 63.57 | 22/03/2018 | 09/07/2018 |
CW1 | RDI Sentinel V50 500 Hz | 148.05684 | −40.5294 | 27.11 | 12/07/2018 | 06/09/2018 |
CW2 bis | RDI Sentinel V50 500 Hz | 148.20132 | −40.701 | 46.08 | 12/07/2018 | 22/09/2018 |
CW4bis | Nortek AWAC 1 MHz | 148.34497 | −40.7296 | 25.42 | 13/07/2018 | 08/09/2018 |
C1 bis | RDI Workshorse 300 kHz | 148.12498 | −40.6891 | 29.07 | 05/12/2018 | 15/02/2019 |
References
- Nash, S.; Phoenix, A. A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines. Renew. Sustain. Energy Rev. 2017, 80, 648–662. [Google Scholar] [CrossRef]
- Copping, A.; Hemery, L. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World; Report for Ocean Energy Systems (OES); Technical Report; U.S. Department of Energy: Washington, DC, USA, 2020.
- Slater, R. Marine Geology of Banks Strait-Furneaux Islands Area, Tasmania. Ph.D. Thesis, University of Sydney, Sydney, Australia, 1969. [Google Scholar]
- Besio, G.; Blondeaux, P.; Brocchini, M.; Vittori, G. On the modeling of sand wave migration. J. Geophys. Res. C Ocean. 2004, 109, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tonnon, P.; van Rijn, L.; Walstra, D. The morphodynamic modelling of tidal sand waves on the shoreface. Coast. Eng. 2007, 54, 279–296. [Google Scholar] [CrossRef]
- van Dijk, T.; van der Tak, C.; de Boer, W.; Kleuskens, M.; Doornenbal, P.J.; Noorlandt, R.; Marges, V. The Scientific Validation of the Hydrographic Survey Policy of the Netherlands Hydrographic Office, Royal Netherlands Navy. Technical Report. 2011. [Google Scholar]
- Knaapen, M. Measuring sand wave migration in the field. Comparison of different data sources and an error analysis. In Proceedings of the Marine Sandwave and River Dune Dynamics II, Enschede, The Netherlands, 1–2 April 2004; pp. 152–159. [Google Scholar]
- Roos, P.; Hulscher, S.; Meer, F.; Wientjes, I. Grain size sorting over offshore sandwaves: Observations and modelling. In Proceedings of the 5th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Enschede, NL, USA, 17–21 September 2007. [Google Scholar] [CrossRef]
- Bellec, V.K.; Bøe, R.; Bjarnadóttir, L.R.; Albretsen, J.; Dolan, M.; Chand, S.; Thorsnes, T.; Jakobsen, F.W.; Nixon, C.; Plassen, L.; et al. Sandbanks, sandwaves and megaripples on Spitsbergenbanken, Barents Sea. Mar. Geol. 2019, 416, 105998. [Google Scholar] [CrossRef]
- Hoozemans, F.M.J. Horizontale ZandgolvenL Literatuurstudie; Technical Report; Deltares, Hydraulic Engineering Reports: Delft, The Netherlands, 1991. [Google Scholar]
- Daniell, J.J.; Harris, P.T.; Hughes, M.G.; Hemer, M.; Heap, A. The potential impact of bedform migration on seagrass communities in Torres Strait, northern Australia. Cont. Shelf Res. 2008, 28, 2188–2202. [Google Scholar] [CrossRef]
- Katoh, K.; Kume, H.; Kuroki, K.; Hasegawa, J. The development of sand waves and the maintenance of navigation channels in the bisanseto sea. Coast. Eng. 1998, 1, 3490–3502. [Google Scholar] [CrossRef]
- Malikides, M.; Harris, P.T.; Jenkins, C.J.; Keene, J.B. Carbonate sandwaves in Bass Strait. Aust. J. Earth Sci. 1988, 35, 303–311. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Z.; Jin, X.; Zhao, D.; Cao, Z.; Guan, W. Observations and analysis of giant sand wave fields on the Taiwan Banks, northern South China Sea. Mar. Geol. 2018, 406, 132–141. [Google Scholar] [CrossRef]
- Blunden, L.S.; Haynes, S.G.; Bahaj, A.S. Tidal current power effects on nearby sandbanks: A case study in the Race of Alderney. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190503. [Google Scholar] [CrossRef]
- Santoro, P.; Fossati, M.; Tassi, P.; Huybrechts, N.; Van Bang, D.P.; Piedra Cueva, I. A coupled wave-current-sediment transport model for an estuarine system: Application to the Río de la Plata and Montevideo Bay. Appl. Math. Model. 2017, 52, 107–130. [Google Scholar] [CrossRef]
- Barnard, P.L.; Hanes, D.M.; Rubin, D.M.; Kvitek, R.G. Giant sand waves at the mouth of San Francisco Bay. Eos Trans. Am. Geophys. Union 2006, 87, 285–289. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Knight, R.J.; Lambiase, J.J. Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada. Nature 1978, 275, 100–104. [Google Scholar] [CrossRef]
- Buijsman, M.C.; Ridderinkhof, H. Long-term ferry-ADCP observations of tidal currents in the Marsdiep inlet. J. Sea Res. 2007, 57, 237–256. [Google Scholar] [CrossRef]
- Bartholdy, J.; Bartholomae, A.; Flemming, B. Grain-size control of large compound flow-transverse bedforms in a tidal inlet of the Danish Wadden Sea. Mar. Geol. 2002, 188, 391–413. [Google Scholar] [CrossRef]
- Jones, H.A.; Davies, P.J. Superficial Sediments of the Tasmanian Continental Shelf and Part of Bass Strait; Australian Government Publishing Service: Canberra, Australia, 1983; p. 25.
- Blom, W.M.; Alsop, D.B. Carbonate mud sedimentation on a temperate shelf: Bass Basin, southeastern Australia. Sediment. Geol. 1988, 60, 269–280. [Google Scholar] [CrossRef]
- Malikides, M.; Harris, P.; Tate, P. Sediment transport and flow over sandwaves in a non-rectilinear tidal environment: Bass Strait, Australia. Cont. Shelf Res. 1989, 9, 203–221. [Google Scholar] [CrossRef]
- Lavering, I.H. Marine environments of Southeast Australia (Gippsland Shelf and Bass Strait) and the impact of offshore petroleum exploration and production activity. Mar. Georesour. Geotechnol. 1994, 12, 201–226. [Google Scholar] [CrossRef]
- Black, K.P. Evidence of the Importance of Deposition and Winnowing of Surficial Sediments at a Continental Shelf Scale. J. Coast. Res. 1992, 8, 319–331. [Google Scholar]
- Whiteway, T.; Heap, A.; Lucieer, V.; Hinde, A.; Ruddick, R.; Harris, P. Seascapes of the Australian Margin and Adjacent Sea Floor: Methodology and Results; Technical Report; University of Tasmania: Hobart, Australia, 2007. [Google Scholar]
- Harris, P.; Heap, A. Geomorphology and Holocene Sedimentology of the Tasmanian Continental Margin; Geology Society of Australia: Hornsby, NSW, Australia, 2009. [Google Scholar]
- Exon, N.; Hill, P.; Keene, J.; Chaproniere, G.; Howe, R.; Harris, P.; Heap, A.; Leach, A. Basement Rocks an Younger Sediments on the Southeast Australian Continental Margin: RV Franklin Cruise FR3/01; Geoscience Australia: Symonston, ACT, Australia, 2002. [Google Scholar]
- Passlow, V.; O’Hara, T.; Daniell, T.; Beaman, R.J.; Twyford, L.M. Sediments and benthic biota of Bass Strait: An approach to benthic habitat mapping. Geosci. Aust. Rec. 2006, 23, 1–97. [Google Scholar]
- Besio, G.; Blondeaux, P.; Brocchini, M.; Hulscher, S.; Idier, D.; Knaapen, M.; Németh, A.; Roos, P.; Vittori, G. The morphodynamics of tidal sand waves: A model overview. Coast. Eng. 2008, 55, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Németh, A.A.; Hulscher, S.J.; de Vriend, H.J. Modelling sand wave migration in shallow shelf seas. Cont. Shelf Res. 2002, 22, 2795–2806. [Google Scholar] [CrossRef]
- Nemeth, A.; Hulscher, S.; van Damme, R. Modelling offshore sand wave evolution. Cont. Shelf Res. 2007, 27, 713–728. [Google Scholar] [CrossRef]
- Blondeaux, P.; Vittori, G. Flow and sediment transport induced by tide propagation: 1. The flat bottom case. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Van Oyen, T.; Blondeaux, P. Tidal sand wave formation: Influence of graded suspended sediment transport. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef]
- Van Oyen, T.; Blondeaux, P.; Van den Eynde, D. Sediment sorting along tidal sand waves: A comparison between field observations and theoretical predictions. Cont. Shelf Res. 2013, 63, 23–33. [Google Scholar] [CrossRef]
- Sterlini-Van der Meer, F.; Hulscher, S.; Hanes, D. Simulating and understanding sand wave variation: A case study of the Golden Gate sand waves. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Borsje, B.; Roos, P.; Kranenburg, W.; Hulscher, S. Modeling tidal sand wave formation in a numerical shallow water model: The role of turbulence formulation. Cont. Shelf Res. 2013, 60, 17–27. [Google Scholar] [CrossRef]
- van Gerwen, W.; Borsje, B.; Damveld, J.; Hulscher, S. Modelling the effect of suspended load transport and tidal asymmetry on the equilibrium tidal sand wave height. Coast. Eng. 2018, 136, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liang, B.; Wu, G.; Borsje, B. Modeling the formation and migration of sand waves: The role of tidal forcing, sediment size and bed slope effects. Cont. Shelf Res. 2019, 190, 103986. [Google Scholar] [CrossRef]
- King, E.V.; Conley, D.C.; Masselink, G.; Leonardi, N.; McCarroll, R.J.; Scott, T. The Impact of Waves and Tides on Residual Sand Transport on a Sediment-Poor, Energetic, and Macrotidal Continental Shelf. J. Geophys. Res. Ocean. 2019, 124, 4974–5002. [Google Scholar] [CrossRef]
- Fairley, I.; Karunarathna, H.; Masters, I. The influence of waves on morphodynamic impacts of energy extraction at a tidal stream turbine site in the Pentland Firth. Renew. Energy 2018, 125, 630–647. [Google Scholar] [CrossRef]
- Marsh, P.; Penesis, I.; Nader, J.R.; Couzi, C.; Cossu, R. Assessment of tidal current resources in Banks. In Proceedings of the 3th European Wave and Tidal Energy Conference, Napoli, Italy, 1–6 September 2019. [Google Scholar]
- Cossu, R.; Penesis, I.; Nader, J.R.; Marsh, P.; Perez, L.; Grinham, A.; Osman, P. Tidal energy site characterisation in a large tidal channel in Banks Strait, Tasmania, Australia. Renew. Energy 2021, in press. [Google Scholar]
- DHI. MIKE 21 & MIKE 3 Flow Model FM, Hydrodynamic Module Scientific Documentation; DHI: Hørsholm, Denmark, 2017. [Google Scholar]
- AUSTeN. Australian Tidal Energy. Available online: http://austen.org.au/ (accessed on 30 November 2019).
- Penesis, I.; Hemer, M.; Cossu, R.; Nader, J.; Marsh, P.; Couzi, C.; Hayward, J.; Sayeef, S.; Osman, P.; Rosebrock, U.; et al. Tidal Energy in Australia Assessing Resource and Feasibility in Australia’s Future Energy Mix. Technical Report. 2020. [Google Scholar]
- Auguste, C.; Marsh, P.; Nader, J.R.; Cossu, R.; Penesis, I. Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics. Energies 2020, 13, 5326. [Google Scholar] [CrossRef]
- Perez, L.; Cossu, R.; Couzi, C.; Penesis, I. Wave-Turbulence Decomposition Methods Applied to Tidal Energy Site Assessment. Energies 2020, 13, 1245. [Google Scholar] [CrossRef] [Green Version]
- Marsh, P.; Irene, P.; Nader, J.R.; Cossu, R.; Auguste, C.; Peter, O.; Camille, C. Assessment of tidal current resources in Banks Strait, Australia including Turbine Extraction Effects. Renew. Energy 2021. under review. [Google Scholar]
- van Veen, J. Measurements in the Strait of Dover, and Their Relation to the Netherlands Coasts. Ph.D. Thesis, Leiden University, Leiden, The Netherlands, 1936. [Google Scholar]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Soulsby, R. Dynamics of Marine Sands; Thomas Telford Publishing: London, UK, 1997. [Google Scholar] [CrossRef]
- Long, D. BGS Detailed Explanation of Seabed Sediment Modified Folk Classification; Technical Report; MESH: Bristol, UK, 2006. [Google Scholar]
- Heap, A. Marine Sediments (MARS) Database. 2009. Available online: http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=a05f7892-eef2-7506-e044-00144fdd4fa6 (accessed on 1 February 2018).
- Stark, N.; Hanff, H.; Svenson, C.; Ernstsen, V.; Lefebvre, A.; Winter, C.; Kopf, A. Coupled penetrometer, MBES and ADCP assessments of tidal variations in surface sediment layer characteristics along active subaqueous dunes, Danish Wadden Sea. Geo-Mar. Lett. 2011, 31, 249–258. [Google Scholar] [CrossRef]
- Cossu, R.; Heatherington, C.; Penesis, I.; Beecroft, R.; Hunter, S. Seafloor Site Characterization for a Remote Island OWC Device Near King Island, Tasmania, Australia. J. Mar. Sci. Eng. 2020, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- van Dijk, T.A.G.P.; Lindenbergh, R.C.; Egberts, P.J.P. Separating bathymetric data representing multiscale rhythmic bed forms: A geostatistical and spectral method compared. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef]
- Knaapen, M.A.F. Sandwave migration predictor based on shape information. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Damen, J.M.; van Dijk, T.A.G.P.; Hulscher, S.J.M.H. Spatially Varying Environmental Properties Controlling Observed Sand Wave Morphology. J. Geophys. Res. Earth Surf. 2018, 123, 262–280. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Sediment Transport, Part II: Suspended Load Transport. J. Hydraul. Eng. ASCE 1984, 110, 1613–1641. [Google Scholar] [CrossRef]
- Ashley, G.M. Classification of large-scale subaqueous bedforms; a new look at an old problem. J. Sediment. Res. 1990, 60, 160–172. [Google Scholar] [CrossRef]
- DHI. MIKE 21 & MIKE 3 Flow Model FM Sand Transport Module Scientific Documentation; DHI: Hørsholm, Denmark, 2017. [Google Scholar]
- Elfrink, B.; Broker, I.; Deigaard, R.; Hansen, E.A.; Justesen, P. Modelling of 3d sediment transport in the surf zone. Coast. Eng. 1996, 1, 3805–3817. [Google Scholar] [CrossRef]
- Fredsøe, J. Turbulent Boundary Layer in Wave-current Motion. J. Hydraul. Eng. 1984, 110, 1103–1120. [Google Scholar] [CrossRef]
- Engelund, F.; Fredsoe, J. Sediment Transport Model for Straight Alluvial Channels. Nord Hydrol. 1976, 7, 293–306. [Google Scholar] [CrossRef] [Green Version]
- Durrant, T.; Greenslade, D.; Hemer, M.; Trenham, C. A Global Wave Hindcast focussed on the Central and South Pacific; CSIRO: Clayton, Australia, 2014.
- Whiteway, T. Australian Bathymetry and Topography Grid; Technical Report Record 2009/021; Geoscience Australia: Symonston, ACT, Australia, 2009. [Google Scholar] [CrossRef]
- Australian Hydrographic Office Charts. Available online: http://www.hydro.gov.au/prodserv/paper/auspapercharts.htm (accessed on 1 February 2018).
- Yongcun, C.; Ole Baltazar, A. Improvement in Global Ocean Tide Model in Shallow Water Regions, Ocean Surface Topography from Space (OSTST); Poster, SV.1-68 45, OSTST, Lisbon, 18–22 October 2010; Technical University of Denmark: Lyngby, Denmark, 2010. [Google Scholar]
- Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/search?text=ERA5%20back%20extension&type=dataset (accessed on 1 February 2018).
- Sandery, P.A.; Kämpf, J. Winter-Spring flushing of Bass Strait, South-Eastern Australia: A numerical modelling study. Estuar. Coast. Shelf Sci. 2005, 63, 23–31. [Google Scholar] [CrossRef]
- Neill, S.P.; Jordan, J.R.; Couch, S.J. Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks. Renew. Energy 2012, 37, 387–397. [Google Scholar] [CrossRef]
- The Open University (Ed.) Waves, Tides and Shallow-Water Processes; Open University Oceanography, Butterworth-Heinemann: Oxford, UK, 1999; p. 9. [Google Scholar] [CrossRef]
- Sandery, P.A.; Kämpf, J. Transport timescales for identifying seasonal variation in Bass Strait, south-eastern Australia. Estuar. Coast. Shelf Sci. 2007, 74, 684–696. [Google Scholar] [CrossRef]
- Pugh, D.; Woodworth, P. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Buijsman, M.C.; Ridderinkhof, H. Long-term evolution of sand waves in the Marsdiep inlet. I: High-resolution observations. Cont. Shelf Res. 2008, 28, 1190–1201. [Google Scholar] [CrossRef]
- Martin-Short, R.; Hill, J.; Kramer, S.; Avdis, A.; Allison, P.; Piggott, M. Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renew. Energy 2015, 76, 596–607. [Google Scholar] [CrossRef] [Green Version]
- Neill, S.P.; Litt, E.J.; Couch, S.J.; Davies, A.G. The impact of tidal stream turbines on large-scale sediment dynamics. Renew. Energy 2009, 34, 2803–2812. [Google Scholar] [CrossRef]
- Berthot, A.; Pattiaratchi, C. Mechanisms for the formation of headland-associated linear sandbanks. Cont. Shelf Res. 2006, 26, 987–1004. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Sediment transport, Part I: Bed load transport. J. Hydraul. Eng. ASCE 1984, 110, 1431–1456. [Google Scholar] [CrossRef] [Green Version]
- Auguste, C.; Nader, J.R.; Marsh, P.; Cossu, R.; Penesis, I. Variability of sediment processes around a tidal farm in a theoretical channel. Renew. Energy 2021, 171, 606–620. [Google Scholar] [CrossRef]
- Larissa Perez, R.C.; Penesis, I. Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites. Renew. Energy 2021, in press. [Google Scholar]
- European Marine Energy Centre. Assessment of Tidal Energy Resource; Technical Report; EMEC: Orkney Campus, UK, 2009. [Google Scholar]
- Publication, B.S.I.S. IEC/TS 62600-201: Marine Energy—Wave, Tidal and Other Water Current Converters-Part 201: Tidal Energy Resource Assessment and Characterization; Technical Report; International Electrotechnical Committee: Geneva, Switzerland, 2015. [Google Scholar]
- European Marine Energy Centre. Geotechnical investigation and testing—Identification and classification of soil – Part 1: Identification and description; Technical Report; Technical Committee ISO/TC 182: Geneva, Switzerland, 2017. [Google Scholar]
Environment | Source | Location | Wave Length (m) | Wave Height (m) | Migration Rate (m/Year) | Max Tidal Velocity (m/s) |
---|---|---|---|---|---|---|
Coastal regions | Besio [4] | North Sea | 120–500 | 2–10 | 1–8 | / |
Coastal regions | Tonnon [5] | North Sea | 250–370 | 1.3–4 | average: 5.5 | / |
Coastal regions | Van Dijck [6] | North Sea | 100–800 | 1–10 | 0–40 | / |
Coastal regions | Knaapen [7] | North Sea | 110–340 | 0.7–3.4 | 0–8.4 | / |
Coastal regions | Roos [8] | Southern North Sea | 145–760 | 1.5–7.3 | / | / |
Coastal regions | Bellec [9] | Western Barrents Sea | 300–700 | 4–19 | / | 1 |
Coastal regions | Hoozemans [10] | Dutch Sea | / | / | up to 200 | / |
Strait | Daniell [11] | Torres Strait (AUS) | ∼62 | 5–10 | 15–48 m over 7 month | 2 |
Strait | Katoh [12] | Bisanseto Sea (JAP) | 80–180 | 2–6 | up to 20 | / |
Strait | Malikides [13] | Bass strait (AUS) | 55–1730 | 2–12 | / | 1 |
Strait | Zhou [14] | Taiwan Banks | 100–2000 | 1.5–15 | 1–5 | 1 |
Strait | Blunden [15] | Alderney Race (UK–FR) | / | 5–10 | 0–70 m for 50days | / |
Strait (not shallow) | Santoro [16] | Messina strait (ITA) | 50–150 | 0.5–6 | / | 1.5 |
Bay | Barnard [17] | San Francisco (USA) | 30–220 | 4–10 | 7 | 2–2.5 |
Tidal Bay | Dalrymple [18] | Bay of Fundy (CAN) | 10–215 | 0.15–3.4 | / | 0.5–2 |
Tidal inlet | Buijsman [19] | North Sea | 125–250 | 1–7 | 0–90 | / |
Tidal inlet | Bartholdy [20] | Danish Wadden Sea | 50–250 | 1.3–3.6 | average: 32 | 1.5–1.25 |
Sand Waves | Wavelength (m) | Wave Height (m) | Asymmetry |
---|---|---|---|
SW1 | 902 | 13.4 | −0.58 |
SW2 | 281 | 5.6 | 0.08 |
SW3 | 194 | 6.6 | 0.46 |
SW4 | 289 | 3.6 | 0.67 |
Vertical discretisation | 2D |
Shoreline | Geoscience Australia (GA)/Australian Hydrography Service(AHS) [67,68] |
Bathymetry | GA/AHS/AUSTEn Project [45,67,68] |
Tidal constituents | , , , ,, , , , and [69] |
Wind/Sea level Pressure | ERA 5 [70] |
Waves | Centre for Australian Weather and Climate Research (CAWCR) using Wawewatch III [66] |
Validation | 5 ADCP Measurements [47] |
Parameters | First Value | Value Max | No of Points |
---|---|---|---|
Current speed | 0.1 | 4.1 | 20 |
Wave height | 0.1 | 12.6 | 25 |
Wave period | 1 | 29 | 14 |
Wave height/Water depth | 0.05 | 20 | 20 |
Angle current/waves | 0 | 360 | 12 |
Grain size | 0.8 | 0.8 | 1 |
Sediment grading | 1.1 | 1.1 | 1 |
d50 | Layer Thickness | Sorting | Manning | ST Formula | Waves Forcing | Tidal Current | Residual Current | |
---|---|---|---|---|---|---|---|---|
Reference case | 0.8 | Infinite | 1.1 | 32 | cf. STQP3 | Hs | Tides | Tidal |
SC1 | 0.4 | |||||||
SC2 | 1.2 | |||||||
SC3 | Varying | |||||||
SC4 | 0 except sand waves area | |||||||
SC5 | 1.3 | |||||||
SC6 | 1.62 | |||||||
SC7 | 2 | |||||||
SC8 | 28 in sand waves area | |||||||
SC9 | 40 in sand waves area | |||||||
SC10 | Van Riijn Equilibrium | No | ||||||
SC11 | Van Riijn Non-Equilibrium | No | ||||||
SC12 | Engelund and Fredsøe Non-equilibrium | No | ||||||
SC13 | Tides × 2 | |||||||
SC14 | Tides/2 | |||||||
SC15 | Hs × 2 | |||||||
SC16 | Hs/2 | |||||||
SC17 | u + 0.005 m/s | |||||||
SC18 | u + 0.1 m/s |
Stats | R4 [47] (Pure Current) | R4 ND (Waves + Current) |
---|---|---|
STD (0.403) | 0.409 | 0.406 |
R | 0.929 | 0.944 |
RMSE | 0.153 | 0.135 |
Autumn | Winter | |||||
---|---|---|---|---|---|---|
STD (0.369) | R | RMSE | STD (0.279) | R | RMSE | |
R4 [47] Pure current) | 0.384 | 0.922 | 0.149 | 0.302 | 0.861 | 0.155 |
R4 ND (Waves + Current) | 0.38 | 0.943 | 0.127 | 0.299 | 0.908 | 0.126 |
ADCP | Model | |||||||
---|---|---|---|---|---|---|---|---|
Period of Deployment | Stations | Residual (m/s) | Direction (Degree) | Cardinal Direction | Residual (m/s) | Direction (Degree) | Cardinal Direction | |
12 July 2018 | 6 September 2018 | CW-1 | 0.063 | 246.6302 | WSW | 0.0626 | 265.8477 | W |
23 March 2018 | 9 July 2018 | CW-2 | 0.085 | 119.2808 | ESE | 0.0564 | 143.5048 | SE |
23 March 2018 | 9 June 2018 | CW-3 | 0.037 | 117.4155 | ESE | 0.0426 | 122.8949 | ESE |
23 March 2018 | 9 June 2018 | CW-4 | 0.0534 | 257.946 | WSW | 0.0615 | 217.1545 | SW |
13 July 2018 | 8 September 2018 | CW-4b * | 0.0434 | 264.0938 | W | 0.0876 | 120.6333 | ESE |
23 March 2018 | 9 July 2018 | CWTb-1 | 0.1453 | 130.2978 | SE | 0.101 | 142.7076 | SE |
23 March 2018 | 9 July 2018 | C-1 | 0.118 | 132.6295 | SE | 0.1103 | 145.2016 | SE |
12 July 2018 | 18 September 2018 | CW-2b | 0.1082 | 156.8022 | SSE | 0.0657 | 155.9911 | SSE |
Sand Waves | Migration Rate (Crest) for ∼9 Months (m) | Migration Rate (Trough) for ∼9 Months (m) |
---|---|---|
SW1 | 27.4 | −25.4/99 |
SW2 | 135 | 87/99 |
SW3 | 21 | 7/87 |
SW4 | −50 | −7/−24 |
Sand Waves | Wavelength (m) | Wave Height (m) | Asymmetry | Migration Rate (Crest) for ∼9 Months (m) | Migration Rate (Trough) for ∼9 Months (m) |
---|---|---|---|---|---|
SW1 | 907 | 12.5 | 0.52 | 83.3 | 59.5/59 |
SW2 | 290 | 4.8 | 0.08 | 43 | 59/40 |
SW3 | 199 | 5.1 | 0.34 | 50 | 40/64 |
SW4 | 294 | 2.53 | 0.61 | 43 | 64/39 |
(m/d) | C1 | C2 | C3 | C4 |
---|---|---|---|---|
Model | 9.08 | 3.71 | 2.92 | 2.02 |
OBS | 1.03 | 0.63 | 0.03 | −0.06 |
Equation (4) | 11.4 | 2.5 | 1.46 | 0.67 |
High Energetic Site | High Energetic Site with Known Bedforms | |||
---|---|---|---|---|
Limited Budget | Desired | Limited Budget | Desired | |
Multi-beam survey | x | x | ||
Several multi-beam surveys (3 years) | x | |||
Grab sampler/Sediment trap | x | x | x 1 | |
Penetrometer | x | x | ||
Sub-bottom profiler | x | |||
ADCP (90 days of data) | x | x | ||
ADCP (1 year of data) | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auguste, C.; Marsh, P.; Nader, J.-R.; Penesis, I.; Cossu, R. Modelling Morphological Changes and Migration of Large Sand Waves in a Very Energetic Tidal Environment: Banks Strait, Australia. Energies 2021, 14, 3943. https://doi.org/10.3390/en14133943
Auguste C, Marsh P, Nader J-R, Penesis I, Cossu R. Modelling Morphological Changes and Migration of Large Sand Waves in a Very Energetic Tidal Environment: Banks Strait, Australia. Energies. 2021; 14(13):3943. https://doi.org/10.3390/en14133943
Chicago/Turabian StyleAuguste, Christelle, Philip Marsh, Jean-Roch Nader, Irene Penesis, and Remo Cossu. 2021. "Modelling Morphological Changes and Migration of Large Sand Waves in a Very Energetic Tidal Environment: Banks Strait, Australia" Energies 14, no. 13: 3943. https://doi.org/10.3390/en14133943
APA StyleAuguste, C., Marsh, P., Nader, J. -R., Penesis, I., & Cossu, R. (2021). Modelling Morphological Changes and Migration of Large Sand Waves in a Very Energetic Tidal Environment: Banks Strait, Australia. Energies, 14(13), 3943. https://doi.org/10.3390/en14133943