Hydrogeochemical Characteristics of Geothermal Waters from Mesozoic Formations in the Basement of the Central Part of the Carpathian Foredeep and the Carpathians (Poland) Using Multivariate Statistical Methods
Abstract
:1. Introduction
- To show the chemical composition of the groundwater, which was potentially geothermal, from the Mesozoic formations of the basement of the central part of the Carpathian Foredeep and the basement of the Outer Carpathians;
- To indicate the differences in the chemical composition of waters, divided into groups by: (1) their origin from Cretaceous, Jurassic, or Triassic formations; (2) the origin of the basement of the Carpathian Foredeep or the basement of the Outer Carpathians; and (3) the depth of their occurrence;
- To find zones of interest due to the distinctive chemical composition of the waters, indicating a potentially active water exchange.
2. Materials and Methods
2.1. Research Area
2.2. Characteristics of the Analyzed Data
- Water-bearing horizon (Cretaceous—K, Jurassic—J, and Triassic—T);
- Region (the basement of the Carpathian Foredeep—ZPK, the basement of the Outer Carpathians—KZ);
- Chemical type of the water (explanation below);
- Water sampling depth interval (every 500 m);
- Water TDS interval (every 25 g/dm3);
- Estimated temperatures at the depth of water sampling (every 20 °C).
- Depth (Z) (in m b.g.l.);
- Density of the water samples (in kg/L);
- TDS of the water samples (in g/L);
- Major ion concentrations (HCO3−, SO42−, Cl−, Ca2+, Mg2+, Na+) (in g/L);
- Concentration of metasilicic acid (H2SiO3) (in g/L);
- Values of hydrochemical indices rNa+/rCl−, rSO42− × 100/rCl−, rHCO3−/rCl−;
- Geothermal gradient Gt (in °C/100 m);
- Estimated temperatures (Tz) (in °C).
2.3. Research Problems
- In the potentially geothermal waters’ are TDS, the concentrations of the main ions (HCO3−, SO42−, Cl−, Ca2+, Mg2+, Na+, H2SiO3), the values of hydrochemical indices (rNa+/rCl−, rSO42− × 100/rCl−, rHCO3−/rCl−), and the estimated temperature (Tz) significantly different depending on the aquifer (Cretaceous, K, Jurassic, J, and Triassic, T) or region (the Carpathian Foredeep, ZPK, and the Outer Carpathians, KZ)?
- Does the chemical type of the water depend on the depth and mineralization of the water?
- What part of the common variance of the density, TDS, concentration of the main ions (HCO3−, SO42−, Cl−, Ca2+, Mg2+, Na+), values of the indices of metamorphism (rNa+/rCl−), sulphate content (rSO42− × 100/rCl−), and bicarbonate-chlorine (rHCO3−/rCl−), and the estimated temperature (Tz) can be explained by up to three new variables (principal components) as a combination of the analyzed parameters (variables)?
- Can anomalies related to the chemical composition of potentially geothermal waters be found in this new system of variables?
2.4. Applied Research Methods
3. Results
3.1. Statistical Tests
3.2. Principal Component Analysis
- A negative correlation (50–83%) between the parameters (variables) of rNa+/rCl−, rSO42− × 100/rCl−, rHCO3−/rCl−, Density, TDS, Cl−, Na+, Ca2+, and Mg2+ based on Spearman’s rank correlation coefficient (Figure 8);
- A very low correlation of H2SiO3 with all parameters (variables).
- PC 1 is the “weight of water”, and high values are associated with waters of high mineralization and density, and thus increased concentrations of Cl−, Na+, Ca2+, and Mg2+ and elevated temperatures (Tz);
- PC 2 is the “anionic-cationic ratio”, and high values are associated with the lowest values of the selected hydrochemical indices and low temperatures (Tz);
- PC 3 is “magnesium non-bicarbonate”, and high values characterize waters with a low concentration of bicarbonate ions (HCO3-) at an increased concentration of Mg2+ and low temperatures (Tz).
0.22∗rSO42− × 100/rCl− − 0.21∗HCO3−/rCl− + 0.21∗Tz − 0.11∗SO42− + 0.04∗HCO3
0.16∗Cl− − 0.16∗Ca2+ − 0.15∗Density − 0.14∗HCO3 − 0.05∗SO42− − 0.01∗Mg2+
0.06∗Ca2+ + 0.05∗Density + 0.05∗Cl− + 0.04∗TDS − 0.02∗SO42− + 0.02∗Na+
4. Discussion
5. Conclusions
- showing the chemical composition of the waters (based on 268 samples) of the analyzed area (Figure 1, Figure 2, Figure 3 and Figure 4) and indicating statistically significant differences between the waters from the Cretaceous, Jurassic and Triassic aquifers and from the basement of the Carpathian Foredeep (ZPK) and from the basement of the Outer Carpathians (KZ) (Figure 5, Table 1 and Table 2). Statistically significant differences were found between the concentrations of most of the main ions, the TDS, and the density of water in the groups mentioned. On the other hand, HCO3− ions showed no significant differences based on the water-bearing horizon such as Mg2+ ions in the regions (ZPK and KZ). SO42+ ions showed significantly higher mean values in the Carpathian Foredeep than in the basement of the Outer Carpathians (Figure 5, Table 3);
- demonstration that the chemical type of water is “not independent” of mineralization (TDS) and depth (Table 4)—what to expect;
- PCA made it possible to indicate the anomalous zone in comparison of the background in terms of the chemical composition of the waters;
- data preparation (orthogonal new variables—PC) for further analysis—e.g., some of the Discriminant Analyses (LDA, QDA, MDA), Cluster Analysis which would be aimed at finding a good discriminant for water classification based on new statistical methods.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podgorski, J.E.; Labhasetwar, P.; Saha, D.; Berg, M. Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India. Environ. Sci. Technol. 2018, 52, 9889–9898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matray, J.M.; Fontes, J.C. Origin of the oil-field brines in the Paris basin. Geology 1990, 18, 501–504. [Google Scholar] [CrossRef]
- Papic, P. Scalling and corrosion potential of selected geothermal waters in Serbia; UNU Geothermal Training Programme, Orkustofnun—National Energy Authority: Reykjavik, Iceland, 1991. [Google Scholar]
- Tomaszewska, B. The prognosis of scaling phenomena in geothermal system using the geochemical modeling methods. Miner. Resour. Manag. 2008, 24, 399–407. [Google Scholar]
- Dzieniewicz, M. Possibilities of using geothermal waters as a raw material for the production of iodine, bromine and other elements. In Proceedings of the Conference: Possibilities of Using Geothermal Waters in Poland with Special Consideration of the Mogilno-Łódź Synclinorium, Ślesin, Poland, 26–27 October 1990; Wyd. AGH: Kraków, Poland, 1990. (In Polish). [Google Scholar]
- Latour, T.; Drobnik, M. Biochemical properties of geothermal waters identified in Poland, determining the manner of their use for therapeutic or recreational purposes. In Geological Exploration Technology, Geothermal Energy, Sustainable Development; No 1; Wyd. IGSMiE PAN: Kraków, Poland, 2016. (In Polish) [Google Scholar]
- Kępińska, B.; Ciągło, J. Possibilities of use of the Podhale geothermal waters for balneotherapeutical and recreational purposes. Geologia 2008, 34, 541–559. (In Polish) [Google Scholar]
- Halaj, E. Geothermal bathing and recreation centres in Poland. Environ. Earth. Sci. 2015, 74, 7497–7509. [Google Scholar] [CrossRef] [Green Version]
- Ponikowska, I. Spa Treatment—A Guide for Patients; Oficyna Wydawnicza Branta: Bydgoszcz, Poland, 1996. [Google Scholar]
- Zuber, A.; Ciężkowski, W. Genetic and chemical types of groundwater. Views of the Krakow center. In Regional Hydrogeology of Poland. T. I. Sweet Waters; Panstwowego Instytutu Geologicznego: Warszawa, Poland, 2007. (In Polish) [Google Scholar]
- Zuber, A.; Chowaniec, J.; Porwisz, B.; Najman, J.; Mochalski, P.; Śliwka, I.; Duliński, M.; Mateńko, T. The origin and age of mineral waters in the Busko-Zdrój region, determined on the basis of environmental markers In Sulfate Waters in the Busko-Zdrój Region; Hydrogeotechnika Sp. o.o.: Kielce, Poland, 2010. (In Polish) [Google Scholar]
- Sekuła, K.; Rusiniak, P.; Wątor, K.; Kmiecik, E. Hydrogeochemistry and Related Processes Controlling the Formation of the Chemical Composition of Thermal Water in Podhale Trough, Poland. Energies 2020, 13, 5584. [Google Scholar] [CrossRef]
- Macioszczyk, A.; Dobrzyński, D. Hydrogeochemistry. Zone of Active Groundwater Exchange; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2002. (In Polish) [Google Scholar]
- Marszałek, H.; Rysiukiewicz, M. Aluminium in waters of the active exchange zone in the Karkonosze National Park (Western Sudetes, SW Poland). Bull. Geogr. Phys. Geogr. Ser. 2019, 17, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Paczyński, B.; Płochniewski, Z. Mineral and Healing Waters of Poland; Państwowy Instytut Geologiczny: Warszawa, Poland, 1996. (In Polish) [Google Scholar]
- Macioszczyk, A. Hydrogeochemistry; Wydawnictwa Geologiczne: Warszawa, Poland, 1987. (In Polish) [Google Scholar]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; Balkema: Rotterdam, The Netherlands, 1999. [Google Scholar]
- Mazor, E. Chemical Isotopic Groundwater Hydrology, 3rd ed.; Marcel Dekker, Inc.: New York, NY, USA; Marcel Dekker, Inc.: Basel, Switzerland, 2004. [Google Scholar]
- Karnkowski, P. Oil and Gas de Posits in Poland; Towarzystwo Geosynoptyków “Geos”: Kraków, Poland, 1999. [Google Scholar]
- Gągulski, T.; Gorczyca, G. Diversification of geothermal conditions of the cenomanian water-bearing system on the example of new drillings from the Busko-Spa region. Geol. Explor. Technol. Geotherm. Energy Sustain. Dev. 2018, 57, 73–84. (In Polish) [Google Scholar]
- Gąsiewicz, A. Sedimentology and diagenesis of gypsum-ghost limestones and origin of Polish native sulphur deposits. Prace Państw. Inst. Geol. 2000, 172, 1–143. (In Polish) [Google Scholar]
- Gąsiewicz, A.; Drzewicki, W.; Jezierski, P. Isotope composition of sulfur in therapeutic sulphide waters in the Busko-Zdrój region—implications for genesis. In Sulfate Waters in the Busko-Zdrój Region; Hydrogeotechnika Sp. o.o.: Kielce, Poland, 2010. (In Polish) [Google Scholar]
- Chowaniec, J.; Gągulski, T.; Gorczyca, G. Occurrence and origin of healing waters in Jurassic formations of the Busko-Zdrój and Solec-Zdrój regions. In 3. Polish Geological Congress. Challenges of Polish Geology; PTG-SGP: Wrocław, Poland, 2016. (In Polish) [Google Scholar]
- Lisik, R.; Szczepański, A. Sulphide Healing Waters in a Part of the Carpathian Foredeep; Hydrogeotechnika Sp. o.o.: Kielce-Kraków, Poland, 2014. (In Polish) [Google Scholar]
- Wiktorowicz, B.; Nowak, J. The geothermal waters in the Kazimierza Wielka region and the possibilities for use. In Geological Exploration Technology, Geothermal Energy, Sustainable Development; No 2; Wyd. IGSMiE PAN: Kraków, Poland, 2016. (In Polish) [Google Scholar]
- Oszczypko, N.; Tomaś, A. Creataceous water-bearing horizons in the middle part of the Carpathian Foredeep. Zesz. Nauk. AGH Geologia 1976, 2, 79–91. (In Polish) [Google Scholar]
- Oszczypko, N.; Tomaś, A. Characteristics of reservoir properties of Jurassic sediments of the Carpathian Foredeep. Kwart. Geol. 1978, T. XX, 3. (In Polish) [Google Scholar]
- Oszczypko, N.; Zuber, A. Geological and isotopic evidence of diagenetic waters in the Polish Flysch Carpathians. Geologica Carpathica 2002, 53, 257–268. [Google Scholar]
- Pich, J. Chemistry of the groundwaters in the middle part of the Carpathian Foredeep. Biul. Inst. Geol. 1978, 4, 73–89. (In Polish) [Google Scholar]
- Chowaniec, J.; Felisiak, I. The genesis of mineralization of the waters of the Mateczny health resort in Kraków. In Tradition and Modernity in Sedimentological Interpretations. IV National Meeting of Sedimentologists; International Association of Sedimentologists: Kraków, Poland, 1995. (In Polish) [Google Scholar]
- Chowaniec, J. Hydrogeology study of the western part of the Polish Carpathians. Hydrogeologia, Z. VIII. Biul. Państw. Inst. Geol. 2009, 434, PIG-PIB. (In Polish) [Google Scholar]
- Chowaniec, J.; Najman, J.; Olszewska, B.; Zuber, A. Origin and age of mineral water at Dobrowoda near the Busko Spa. Przegl. Geol. 2009, 57, 286–293. (In Polish) [Google Scholar]
- Chowaniec, J.; Ciężkowski, W.; Duliński, M.; Józefko, I.; Porwisz, B.; Zuber, A. Chemical facies of CO2-rich waters in the Flysch Carpathians versus water age. Biul. Państw. Inst. Geol. 2009, 436, 47–54. (In Polish) [Google Scholar]
- Chowaniec, J.; Najman, J.; Mochalski, P.; Śliwka, I.; Zuber, A. The origin of mineral waters in Kraków. Biul. Państw. Inst. Geol. 2011, 445, 35–42. (In Polish) [Google Scholar]
- Wątor, K.; Kmiecik, E.; Lipiec, I. The use of principal component analysis for the assessment of the spatial variability of curative waters from the Busko-Zdrój and Solec-Zdrój region (Poland)—preliminary results. Water Supply 2019, 19, 1137–1143. [Google Scholar] [CrossRef]
- Gała, I. Hydrochemical characteristics of sulphide thermal waters in the Busko C-1 borehole. In Geological Exploration Technology, Geothermal Energy, Sustainable Development; No 2; Wyd. IGSMiE PAN: Kraków, Poland, 2013; pp. 117–126. (In Polish) [Google Scholar]
- Gorczyca, G.; Chowaniec, J.; Gągulski, T. Characteristics of geothermal water of the Cenomanian aquifer system at the boundary of the SE part of the Miechów Basin and the Carpathian Foredeep. Przegl. Geol. 2017, 65, 237–246. (In Polish) [Google Scholar]
- Kotlicki, S. Groundwater chemistry of the south-western part of the Miechów Trough. Biul. Inst. Geol. 1971, 1, 249. (In Polish) [Google Scholar]
- Krawczyk, J.; Mateńko, T.; Mądry, J.; Porwisz, B. Healing waters of Busko Zdrój in the light of previous research. In Contemporary Problems of Hydrogeology, T. IX; PIG: Warszawa-Kielce, Poland, 1999. (In Polish) [Google Scholar]
- Lisik, R. Healing sulphide waters of the Pińczów-Busko-Zdrój-Kazimierza Wielka region. In Sulfate Waters in the Busko-Zdrój Region; Hydrogeotechnika Sp. o.o.: Kielce, Poland, 2010. (In Polish) [Google Scholar]
- Motyka, J.; Rajchel, L. Mineral waters and acratopegs. In Model Study of Comprehensive Use and Protection of Balneological Raw Materials in Krakow and the Surrounding Area; Ney, R., Ed.; Wyd. IGSMiE PAN: Kraków, Poland, 2002. (In Polish) [Google Scholar]
- Motyka, J.; Porwisz, B.; Rajchel, L.; Zuber, A. Mineral waters of Krzeszowice. In Contemporary Problems of Hydrogeology; T. IX, Part 1; Politechnika Gdańska: Gdańsk, Poland, 2003; pp. 129–135. (In Polish) [Google Scholar]
- Sowiżdżał, A.; Jasnos, J. Hydrochemical characteristics of the groundwaters. In Geothermal Atlas of the Carpathian Foredeep; Górecki, W., Sowiżdżał, A., Jasnos, J., Papiernik, B., Hajto, M., Machowski, G., Kępińska, B., Czopek, B., Kuźniak, T., Kotyza, J., et al., Eds.; Goldruk: Kraków, Poland, 2012. (In Polish) [Google Scholar]
- Jasnos, J. Characteristics of mineral, specific, healing waters and brines. In Geothermal Atlas of the Carpathian Foredeep; Górecki, W., Sowiżdżał, A., Jasnos, J., Papiernik, B., Hajto, M., Machowski, G., Kępińska, B., Czopek, B., Kuźniak, T., Kotyza, J., et al., Eds.; Goldruk: Kraków, Poland, 2012. (In Polish) [Google Scholar]
- Jasnos, J. Occurrences of mineral waters, waters containing specific components and brines recorded in the petroleum-prospecting wells. In Geothermal Atlas of the Eastern Carpathians; Górecki, W., Hajto, M., Augustyńska, J., Jasnos, J., Kuśmierek, J., Kuźniak, T., Machowski, G., Machowski, W., Nosal, J., Michna, M., et al., Eds.; Goldruk: Kraków, Poland, 2013. [Google Scholar]
- Jasnos, J. Geothermal Conditions of the Mesozoic Formations in the Miechów Trough. Ph.D. Thesis, AGH—University of Science and Technology, Kraków, Poland, 2019. Unpublished. (In Polish). [Google Scholar]
- Hajto, M. Distribution map of terrestrial heat flow density in the Polish Lowlands. In Atlas of Geothermal Resources of Mesozoic Formations in the Polish Lowlands; Górecki, W., Szczepański, A., Sadurski, A., Hajto, M., Papiernik, B., Kuźniak, T., Kozdra, T., Soboń, J., Szewczyk, J., Sokołowski, A., et al., Eds.; Goldruk: Kraków, Poland, 2006. [Google Scholar]
- Hajto, M. Geothermal analysis of the Polish Western Carpathians. In Atlas of Geothermal Waters and Energy Resources in the Western Carpathians; Górecki, W., Szczepański, A., Oszczypko, N., Hajto, M., Oszczypko-Clowes, M., Papiernik, B., Kępińska, B., Czopek, B., Haładus, A., Kania, J., et al., Eds.; Goldruk: Kraków, Poland, 2011. [Google Scholar]
- Hajto, M.; Szewczyk, J. Geothermal analysis of the Carpathian Foredeep area. In Geothermal Atlas of the Carpathian Foredeep; Górecki, W., Sowiżdżał, A., Jasnos, J., Papiernik, B., Hajto, M., Machowski, G., Kępińska, B., Czopek, B., Kuźniak, T., Kotyza, J., et al., Eds.; Goldruk: Kraków, Poland, 2012. (In Polish) [Google Scholar]
- Altowskij, M.E.; Szwiec, W.M. On the question of the nomenclature of the chemical composition of groundwater. Sat. Problems of hydrogeology and engineering geology; No 14; Gos Geoltekhizdat: Moscow, Russia, 1956. [Google Scholar]
- Stanisz, A. An Accessible Statistics Course with the Use of Statistica PL on Examples from Medicine. Volume 3. Multivariate Analyzes; Statsoft: Kraków, Poland, 2007. (In Polish) [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: Cham, Switzerland, 2002. [Google Scholar]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 5th ed.; Pearson Education: Harrow, UK, 2005. [Google Scholar]
- Lipiec, I.; Wątor, K.; Kmiecik, E. The application of selected hydrochemical indicators in the interpretation of hydrogeochemical data—A case study from Busko-Zdrój and Solec-Zdrój (Poland). Ecol. Indic. 2020, 117. [Google Scholar] [CrossRef]
- Różkowski, J.; Jóźwiak, K.; Andrejczuk, V. Chemistry of groundwater in gypsiferous Badenian series in the northern part of the Carpathian Foredeep. Biul. Państw. Inst. Geol. 2011, 445, 573–582. [Google Scholar]
- Turek, S. Analysis of relations between hydrogeological conditions and distribution of sulfur deposits in the Miocene in the Carpathian Foredeep. Przegl. Geol. 1983, 31, 482–485. [Google Scholar]
- Nieć, M. Sulfur deposits transforming processes. Przegl. Geol. 1986, 34, 7. [Google Scholar]
- Szuflicki, M.; Malon, A.; Tymiński, M.; Bońda, R.; Brzeziński, D.; Czapigo-Czapla, M.; Czapowski, G.; Fabiańczyk, J.; Kalinowska, A.; Malon, A.; et al. Balance of Minerals and Groundwater Resources in Poland as of 31.XII. 2019; Tymiński, M., Ed.; PIG-PIB: Warszawa, Poland, 2020. (In Polish) [Google Scholar]
- Barbacki, A.P. Geothermal water reservoirs of the Miechów Trough and the central part of the Carpathian Foredeep. In Studia Rozprawy Monografie; IGSMiE PAN: Kraków, Poland, 2004. (In Polish) [Google Scholar]
- Han, D.; Liang, X.; Jin, M.; Currell, M.J.; Han, Y.; Song, X. Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China. Environ. Manage 2009, 44, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Pazdro, Z.; Kozerski, B. General hydrogeology; Wydawnictwa Geologiczne: Warszawa, Poland, 1990. (In Polish) [Google Scholar]
- Lenk, T. (Ed.) Geological Structure, Structural, Facies and Geochemical Conditions as well as Prospects for Exploration of Natural Gas Deposits in the Miocene Deposits in the Vicinity of the Shore and under the Carpathian Thrust; Pr. Inst. Górnict. Naft. i Gazown; No. 45; Inst. Górn. Naft. i Gazown.: Kraków, Poland, 1983. (In Polish) [Google Scholar]
Grouped by | Count | % of Total | |
---|---|---|---|
Water-bearing horizon | K | 101 | 37.7 |
J | 148 | 55.2 | |
T | 19 | 7.1 | |
Region | KZ | 49 | 18.3 |
ZPK | 219 | 81.7 | |
Chemical Type | SO4-Ca | 4 | 1.5 |
SO4-Na | 1 | 0.4 | |
Cl-Na | 228 | 85.1 | |
SO4-HCO3 | 1 | 0.4 | |
Cl-HCO3 | 2 | 0.7 | |
Cl-SO4 | 32 | 11.9 | |
Depth interval | 0–500 | 6 | 2.2 |
500–1000 | 123 | 45.9 | |
1000–1500 | 60 | 22.4 | |
1500–2000 | 49 | 18.3 | |
2000–2500 | 20 | 7.5 | |
2500–3000 | 7 | 2.6 | |
3000–3500 | 3 | 1.1 | |
TDS interval | 0–25 | 54 | 20.1 |
25–50 | 56 | 21.0 | |
50–75 | 51 | 19.0 | |
75–100 | 41 | 15.3 | |
100–125 | 43 | 16.0 | |
125–150 | 10 | 3.7 | |
150–175 | 12 | 4.5 | |
175–200 | 1 | 0.4 | |
Estimated temperature at the depth Z | 20–30 | 98 | 36.6 |
30–40 | 56 | 20.9 | |
40–50 | 41 | 15.3 | |
50–60 | 40 | 14.9 | |
60–70 | 17 | 6.3 | |
70–80 | 12 | 4.5 | |
80–90 | 4 | 1.5 | |
Total | 268 | 100 |
Statistical Measure | Parameter Name | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ordinate (m a.s.l.) | Depth−Z (m b.g.l.) | Density (kg/L) | TDS (g/L) | HCO3− (g/L) | SO42− (g/L) | Cl− (g/L) | Ca2+ (g/L) | Mg2+ (g/L) | Na+ (g/L) | H2SiO3 (g/L) | rNa+/rCl− | rSO42− × 100/rCl− | rHCO3−/rCl− | Gt (°C/100 m) | Tz (°C) | ||
Statistical measure | Minimum | 162.00 | 436.00 | 1.00 | 2.00 | 0.01 | 0.02 | 0.20 | <0.01 | <0.01 | 0.39 | <0.01 | 0.52 | 0.04 | <0.01 | 2.33 | 20.65 |
1st Quartile | 183.40 | 701.00 | 1.02 | 29.53 | 0.24 | 0.68 | 15.42 | 0.81 | 0.32 | 9.44 | 0.02 | 0.85 | 1.16 | <0.01 | 2.52 | 26.77 | |
Median | 199.8 | 1026.00 | 1.04 | 60.95 | 0.39 | 1.66 | 36.52 | 1.97 | 0.75 | 20.09 | 0.03 | 0.88 | 2.53 | 0.07 | 2.57 | 35.56 | |
Mean | 220.20 | 1194.00 | 1.05 | 66.05 | 0.45 | 1.73 | 38.62 | 2.38 | 0.73 | 21.95 | 0.05 | 0.97 | 25.89 | 0.04 | 2.60 | 39.96 | |
3rd Quartile | 240.00 | 1563.00 | 1.07 | 98.38 | 0.61 | 2.65 | 59.15 | 3.65 | 1.09 | 33.74 | 0.05 | 0.99 | 9.62 | 0.02 | 2.68 | 51.49 | |
Maximum | 398.00 | 3077.00 | 1.12 | 176.13 | 1.16 | 4.89 | 105.67 | 7.31 | 1.90 | 65.41 | 0.40 | 3.07 | 626.33 | 1.62 | 3.06 | 89.51 | |
Range | 236.00 | 2641.45 | 0.12 | 174.13 | 1.15 | 4.87 | 105.47 | 7.31 | 1.90 | 65.02 | 0.40 | 2.55 | 626.29 | 1.62 | 0.73 | 68.85 | |
Variance | 2728.65 | 365,075.09 | 0.00 | 1852.46 | 0.08 | 1.44 | 703.22 | 3.04 | 0.19 | 224.67 | <0.01 | 0.09 | 7469.12 | 0.16 | 0.02 | 251.16 | |
Standard deviation | 52.24 | 604.21 | 0.03 | 43.04 | 0.28 | 1.20 | 26.52 | 1.74 | 0.44 | 14.99 | 0.05 | 0.3 | 86.42 | 0.03 | 0.14 | 15.85 |
Parameter | Statistically Significant Differences between Mean Values (Significance Level = 5%) | |
---|---|---|
Group by Water-Bearing Horizon | Group by Region | |
Density | K < J, J > T | ZPK < KZ |
TDS | K < J, J > T | ZPK < KZ |
HCO3− | - | ZPK < KZ |
SO42− | K > J, K > T | ZPK > KZ |
Cl− | K < J, J > T | ZPK < KZ |
Ca2+ | K < J | ZPK < KZ |
Mg2+ | J > T | - |
Na+ | K < J, J > T | ZPK < KZ |
H2SiO3 | - | - |
rNa+/rCl− | - | - |
rSO42− × 100/rCl− | K < J | ZPK > KZ |
rHCO3−/rCl− | - | - |
Tz | K < J, K < T | ZPK < KZ |
Type of Result or Interpretation | Depth Interval (Every 250 m) | TDS Interval (Every 10 g/L) |
---|---|---|
Chemical type | “not independent” (5% significance level) | “not independent” (5% significance level) |
p-value | 0.032 | 1.61 × 10−15 |
PCA Parameters | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | PC11 | PC12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eigenvalues | 2.51 | 1.43 | 1.05 | 0.99 | 0.89 | 0.61 | 0.46 | 0.36 | 0.17 | 0.11 | 0.03 | 0.00 |
Proportion of explained variance | 0.53 | 0.17 | 0.09 | 0.08 | 0.07 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Cumulative proportion of explained variance | 0.53 | 0.70 | 0.79 | 0.87 | 0.94 | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Parameter | PC 1 | PC 2 | PC 3 | PC 4 | PC 5 | PC 6 | PC 7 | PC 8 | PC 9 | PC 10 | PC 11 | PC 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Density | 0.3819 | –0.1503 | 0.0456 | –0.0599 | –0.0022 | 0.2099 | –0.0539 | 0.0471 | –0.1872 | –0.8601 | –0.0427 | –0.0030 |
TDS | 0.3812 | –0.1647 | 0.0402 | –0.0476 | 0.0042 | 0.2353 | –0.0425 | 0.0841 | 0.0051 | 0.2560 | 0.1654 | 0.8164 |
HCO3− | 0.0372 | –0.1430 | –0.7671 | 0.1062 | 0.6008 | –0.0202 | –0.1298 | 0.0071 | 0.0104 | –0.0070 | 0.0054 | –0.0059 |
SO42− | –0.1061 | –0.0492 | –0.0174 | –0.9581 | 0.1786 | 0.0244 | 0.1559 | –0.0592 | –0.0759 | 0.0356 | 0.0154 | –0.0229 |
Cl− | 0.3825 | –0.1583 | 0.0525 | –0.0089 | –0.0038 | 0.2251 | –0.0457 | 0.0836 | –0.0265 | 0.2372 | 0.6769 | –0.5008 |
Ca2+ | 0.3383 | –0.1593 | 0.0624 | –0.0396 | 0.0581 | –0.6532 | 0.2861 | 0.5439 | 0.1989 | –0.0028 | –0.0796 | –0.0328 |
Mg2+ | 0.2979 | –0.0126 | 0.3972 | 0.0674 | 0.4619 | –0.3042 | –0.0392 | –0.6581 | 0.0806 | 0.0259 | –0.0311 | –0.0085 |
Na+ | 0.3749 | –0.1659 | 0.0223 | –0.0430 | –0.0267 | 0.3627 | –0.0836 | 0.0567 | 0.0522 | 0.3213 | –0.7073 | –0.2844 |
rNa+/rCl− | –0.2584 | –0.5114 | 0.0722 | 0.0117 | –0.0042 | 0.1984 | 0.0895 | –0.0773 | 0.7658 | –0.1532 | 0.0557 | 0.0021 |
r SO42−x100/rCl− | –0.2245 | –0.4917 | 0.1949 | –0.0653 | –0.0035 | –0.2437 | –0.7217 | 0.1443 | –0.2483 | 0.0497 | –0.0171 | –0.0005 |
r HCO3−/rCl− | –0.2092 | –0.5323 | 0.0882 | 0.2101 | 0.0997 | 0.0726 | 0.5766 | –0.0654 | –0.5110 | 0.0810 | –0.0363 | –0.0013 |
Tz | 0.2127 | –0.2504 | –0.4378 | –0.0913 | –0.6161 | –0.3068 | 0.0168 | –0.4657 | –0.0205 | 0.0259 | –0.0005 | –0.0013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasnos, J. Hydrogeochemical Characteristics of Geothermal Waters from Mesozoic Formations in the Basement of the Central Part of the Carpathian Foredeep and the Carpathians (Poland) Using Multivariate Statistical Methods. Energies 2021, 14, 4022. https://doi.org/10.3390/en14134022
Jasnos J. Hydrogeochemical Characteristics of Geothermal Waters from Mesozoic Formations in the Basement of the Central Part of the Carpathian Foredeep and the Carpathians (Poland) Using Multivariate Statistical Methods. Energies. 2021; 14(13):4022. https://doi.org/10.3390/en14134022
Chicago/Turabian StyleJasnos, Joanna. 2021. "Hydrogeochemical Characteristics of Geothermal Waters from Mesozoic Formations in the Basement of the Central Part of the Carpathian Foredeep and the Carpathians (Poland) Using Multivariate Statistical Methods" Energies 14, no. 13: 4022. https://doi.org/10.3390/en14134022
APA StyleJasnos, J. (2021). Hydrogeochemical Characteristics of Geothermal Waters from Mesozoic Formations in the Basement of the Central Part of the Carpathian Foredeep and the Carpathians (Poland) Using Multivariate Statistical Methods. Energies, 14(13), 4022. https://doi.org/10.3390/en14134022