Influence of Population Income on Energy Consumption for Heating and Its CO2 Emissions in Cities
Abstract
:1. Introduction
1.1. Overview
1.2. Literature Review
1.3. Aim of the Research
2. Method
2.1. Classification of Cities by Income of Their Inhabitants
2.2. Equivalized Disposable Income
2.3. Thermal Energy Consumption
2.4. Elimination of the Influence of Climate
2.5. CO2 Emissions
3. Application of the Method to the Case of Spain
3.1. Classification of Study Cities
3.2. Thermal Energy Consumption
3.3. CO2 Emissions
4. Results and Discussion
4.1. Sample of Study
4.2. Energy Consumption per Group
4.3. Energy Consumption per Household
4.4. Energy Consumption per Inhabitant
4.5. Energy Consumption without the Influence of Climate
4.6. CO2 Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Economic and Social Affairs. 2014 Demographic Yearbook, 64th ed.; United Nations: New York, NY, USA, 2015. [Google Scholar]
- United Nations. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 13 May 2020).
- International Energy Agency. 2018 Global Status Report: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme: Nairobi, Kenya, 2018. [Google Scholar]
- Shahrokni, H.; Levihn, F.; Brandt, N. Big meter data analysis of the energy efficiency potential in Stockholm’s building stock. Energy Build. 2014, 78, 153–164. [Google Scholar] [CrossRef]
- Lukic, N.; Nikolic, N.; Timotijevic, S.; Tasic, S. Influence of an unheated apartment on the heating consumption of residential building considering current regulations—Case of Serbia. Energy Build. 2017, 155, 16–24. [Google Scholar] [CrossRef]
- IEA. Energy Technology Perspective 2017, Catalysing Energy Technology Transformations; International Energy Agency: Paris, France, 2017. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Available online: https://en.unesco.org/sdgs (accessed on 29 June 2020).
- COM(2019) 640 Final. The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Parliament News. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20200618STO81513/green-deal-key-to-a-climate-neutral-and-sustainable-eu (accessed on 15 August 2020).
- United Nation. Department of Economic and Social Affairs. Available online: https://sdgs.un.org/goals/goal11 (accessed on 14 September 2020).
- Wang, L.; Long, R.; Chen, H.; Li, W.; Yang, J. A review of studies on urban energy performance evaluation. Environ. Sci. Pollut. Res. 2019, 26, 3243–3261. [Google Scholar] [CrossRef]
- D’Agostino, D.; Zangheri, P.; Castellazzi, L. Towards nearly zero energy buildings in Europe: A focus on retrofit in non-residential buildings. Energies 2020, 10, 117. [Google Scholar] [CrossRef]
- Cui, Y.; Sun, N.; Cai, H.; Li, S. Indoor temperatura improvement and energy-saving renovations in rural houses of China’s cold region—A case study of Shandong province. Energies 2020, 13, 870. [Google Scholar] [CrossRef] [Green Version]
- Ala-Kotila, P.; Vainio, T.; Laamanen, J. The influence of building renovations on indoor comfort—A field test in an apartment building. Energies 2020, 13, 4958. [Google Scholar] [CrossRef]
- Hashemi, A. Climate resilient low-income tropical housing. Energies 2020, 9, 468. [Google Scholar] [CrossRef] [Green Version]
- Lima, F.; Ferreira, P.; Leal, V. A review of the relation between household indoor temperature and health outcomes. Energies 2020, 13, 2881. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Wu, Z.; Fu, H.; Shi, Y.; Guo, H. Scenario analysis of natural gas consumption in China based on wavelet neural network optimized by particle swarm optimization algorithm. Energies 2018, 11, 825. [Google Scholar] [CrossRef] [Green Version]
- Scarpa, F.; Bianco, V. Assessing the quality of natural gas consumption forecasting: An application to the Italian residential sector. Energies 2017, 10, 1879. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, E.; Montazerin, N. Stochastic analysis of natural gas consumption in residential and commercial buildings. Energy Build. 2011, 43, 2289–2297. [Google Scholar] [CrossRef]
- Akpinar, M.; Adak, M.F.; Yumusak, N. Day-ahead natural gas demand forecasting using optimized ABC-based neural network with sliding window technique: The case study of regional basis in Turkey. Energies 2017, 10, 781. [Google Scholar] [CrossRef] [Green Version]
- De, G.; Gao, W. Forecasting China’s natural gas consumption based on AdaBoost—Particle swarm optimization—Extreme learning machine integrate learning method. Energies 2018, 11, 2938. [Google Scholar] [CrossRef] [Green Version]
- Flores-Larsen, S.; Filippín, C. Energy efficiency, thermal resilience, and health during extreme heat events in low-income housing in Argentina. Energy Build. 2021, 231, 110576. [Google Scholar] [CrossRef]
- Erdogdu, E. Natural gas demand in Turkey. Appl. Energy 2010, 87, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Bianco, V.; Scarpa, F.; Tagliafico, L.A. Analysis and future outlook of natural gas consumption in the Italian residential sector. Energy Conv. Manag. 2014, 87, 754–764. [Google Scholar] [CrossRef]
- Behrouznia, A.; Saberi, M.; Azadeh, A.; Asadzadeh, S.M.; Pazhoheshfar, P. An adaptive network based fuzzy inference system-fuzzy data envelopment analysis for gas consumption forecasting and analysis: The case of South America. In Proceedings of the 2010 International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia, 15–17 June 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Li, J.; Dong, X.; Shangguan, J.; Hook, M. Forecasting the growth of China’s natural gas consumption. Energy 2011, 36, 1380–1385. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Lin, B. China’s natural gas consumption and subsidies—From a sector perspective. Energy Policy 2014, 65, 541–551. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, S.; Peng, T.; Ou, X. Life cycle energy consumption and greenhouse gas emissions analysis of natural gas- based distributed generation projects in China. Energies 2017, 10, 1515. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, M.; Thygesen, R.; Karlsson, B.; Ödlund, L. Rev-changes in primary energy use and CO2 emissions—An impact assessment for a building with focus on the Swedish proposal for nearly zero energy buildings. Energies 2017, 10, 978. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.; Lin, B. Carbon dioxide (CO2) emissions during urbanization: A comparative study between China and Japan. J. Clean Prod. 2017, 143, 356–368. [Google Scholar] [CrossRef]
- Alam, M.M.; Murad, M.W.; Noman, A.H.M.; Ozturk, I. Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecol. Indic. 2016, 70, 466–479. [Google Scholar] [CrossRef]
- Sharma, S.S. Determinants of carbon dioxide emissions: Empirical evidence from 69 countries. Appl. Energy 2011, 88, 376–382. [Google Scholar] [CrossRef]
- Solarin, S.A.; Lean, H.H. Natural gas consumption, income, urbanization, and CO2 emissions in China and India. Environ. Sci. Pollut. Res. 2016, 23, 18753–18765. [Google Scholar] [CrossRef] [PubMed]
- Sohag, K.; Mamun, M.d.A.; Uddin, G.S.; Ahmed, A.M. Sectoral output, energy use, and CO2 emission in middle-income countries. Environ. Sci. Pollut. Res. 2017, 24, 9754–9764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wang, P.; Cui, L.; Huang, S.; Song, M. Decomposition and decoupling analysis of CO2 emissions in OECD. Appl. Energy 2018, 231, 937–950. [Google Scholar] [CrossRef]
- Lyons, S.; Pentecost, A.; Tol, R.S.J. Socioeconomic distribution of emissions and resource use in Ireland. J. Environ. Manag. 2012, 112, 186–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chancel, L. Are younger generations higher carbon emitters than their elders? Inequalities, generations and CO2 emissions in France and in the USA. Ecol. Econ. 2014, 100, 195–207. [Google Scholar] [CrossRef]
- Golley, J.; Meng, X. Income inequality and carbon dioxide emissions: The case of Chinese urban households. Energy Econ. 2012, 34, 1864–1872. [Google Scholar] [CrossRef]
- Wang, S.; Guangdong, L.; Fang, C. Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence form countries with different income level. Renew. Sustain. Energy Rev. 2018, 81, 2144–2159. [Google Scholar] [CrossRef]
- Kennedy, C.; Steinberger, J.; Gasson, B.; Hansen, Y.; Hillman, T.; Havránek, M.; Pataki, D.; Phdunngsilp, A.; Ramaswami, A.; Mendez, G.V. Greenhouse gas emissions from global cities. Environ. Sci. Technol. 2009, 43, 7297–7302. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, S.; Liu, C. Comparing urban and rural household CO2 emissions—Case from China’s four megacities: Beijing, Tianjin, Shanghai, and Chongqing. Energies 2018, 11, 1257. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Xing, R.; Chen, X.; Xue, B. A survey-based investigation of greenhouse gas and pollutant emissions from household energy consumption in the Qinghai-Tibet Plateau of China. Energy Build. 2021, 235, 110753. [Google Scholar] [CrossRef]
- Zarco-Soto, I.M.; Zarco-Periñán, P.J.; Sánchez-Durán, R. Influence of cities population size on their energy consumption and CO2 emissions: The case of Spain. Environ. Sci. Pollut. Res. 2021, 28, 28146–28167. [Google Scholar] [CrossRef]
- Urquizo, J.; Calderón, C.; James, P. Metrics of urban morphology and their impact on energy consumption: A case study in the United Kingdom. Energy Res. Soc. Sci. 2017, 32, 193–206. [Google Scholar] [CrossRef]
- Hekkenberg, M.; Benders, R.M.J.; Moll, H.C.; Schoot, A.J.M. Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands. Energy Policy 2009, 37, 1542–1551. [Google Scholar] [CrossRef]
- Nageli, C.; Camarasa, C.; Jakob, M.; Catenazzi, G.; Ostermeyer, Y. Synthetic building stocks as a way to assess the energy demand and greenhouse gas emissions of national building stocks. Energy Build. 2018, 173, 443–460. [Google Scholar] [CrossRef]
- Valor, E.; Meneu, V.; Caselles, V. Daily air temperature and electricity load in Spain. Appl. Meteorol. 2001, 40, 1413–1421. [Google Scholar] [CrossRef]
- Li, D.H.W.; Yang, L.; Lam, J.C. Impact of climate change on energy use in the built environment in different climate zones—A review. Energy 2012, 42, 103–112. [Google Scholar] [CrossRef]
- Zarco-Soto, I.M.; Zarco-Periñán, P.J.; Sánchez-Durán, R. Influence of climate on energy consumption and CO2 emissions: The case of Spain. Environ. Sci. Pollut. Res. 2020, 27, 15645–15662. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estadística, Cifras de Población, Ministerio de Asuntos Económicos y Transformación Digital. Available online: http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176951&menu=ultiDatos&idp=1254735572981 (accessed on 12 October 2020).
- Ministerio de Empleo y Seguridad Social. Real Decreto 1171/2015, de 29 de Diciembre, por el que se fija el Salario Mínimo Interprofesional para 2016; Boletín Oficial del Estado: Madrid, Spain, 2015.
- Instituto Nacional de Estadística, Demografía y Población, Ministerio de Asuntos Económicos y Transformación Digital. Available online: http://www.ine.es/ss/Satellite?L=es_ES&c=Page&cid=1254735910183&p=1254735910183&pagename=INE%2FINELayout (accessed on 1 November 2020).
- Comisión Nacional de los Mercados y la Competencia. Informe de Supervisión del Mercado de Gas Natural en España; Ministerio de Economía, Industria y Competitividad: Madrid, Spain, 2017.
- Ministerio de Industria, Energía y Turismo & Ministerio de Fomento, Factores de Emisión de CO2 y Coeficientes de paso a Energía Primaria de Diferentes Fuentes de Energía Final Consumidas en el Sector de Edificios de España. Available online: https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Reconocidos/Paginas/IndexDocumentosReconocidos.aspx (accessed on 19 March 2020).
Equivalized Disposable Income | Cities |
---|---|
Group 1: income less than 2 times the NMW | Alcalá de Guadaíra, Alcoy/Alcoi, Arona, Arrecife, Benalmádena, Benidorm, Chiclana de la Frontera, Dos Hermanas, Ejido (El), Elche/Elx, Elda, Estepona, Fuengirola, Gandía, Jerez de la Frontera, Linares, Línea de la Concepción (La), Lorca, Marbella, Mijas, Motril, Orihuela, Parla, Puerto de Santa María, Roquetas de Mar, San Bartolomé de Tirajana, San Fernando, San Vicente del Raspeig, Sanlúcar de Barrameda, Santa Coloma de Gramenet, Santa Lucía de Tirajana, Talavera de la Reina, Telde, Torremolinos, Torrent, Torrevieja, Utrera, Vélez-Málaga, |
Group 2: income between 2 and 2.5 times the NMW | Albacete, Alcalá de Henares, Alcorcón, Algeciras, Alicante/Alacant, Almería, Aranjuez, Arganda del Rey, Ávila, Avilés, Badajoz, Badalona, Cáceres, Cádiz, Cartagena, Castellón de la Plana, Ceuta, Ciudad Real, Collado Villalba, Córdoba, Cornellà de Llobregat, Coslada, Cuenca, Ferrol, Fuenlabrada, Getafe, Gijón, Granada, Guadalajara, Huelva, Huesca, Jaén, Las Palmas, Leganés, L’Hospitalet de Llobregat, Lleida, Logroño, Lugo, Málaga, Manresa, Mataró, Melilla, Mérida, Molina de Segura, Mollet del Vallès, Móstoles, Murcia, Ourense, Palencia, Palma de Mallorca, Paterna, Pinto, Ponferrada, Pontevedra, Prat de Llobregat (El), Reus, Rubí, Sabadell, Sagunto/Sagunt, Salamanca, San Cristóbal de la Laguna, Sant Boi de Llobregat, Santa Cruz de Tenerife, Segovia, Sevilla, Siero, Terrassa, Torrejón de Ardoz, Torrelavega, Valdemoro, Valencia, Vigo, Viladecans, Vilanova i la Geltrú, Vila-Real, Zamora |
Group 3: income between 2.5 and 3 times the NMW | A Coruña, Barakaldo, Burgos, Cerdanyola del Vallès, Girona, Granollers, Irún, León, Oviedo, Pamplona/Iruña, Rivas-Vaciamadrid, San Sebastián de los Reyes, Santander, Santiago de Compostela, Tarragona, Toledo, Valladolid, Zaragoza |
Group 4: income between 3 and 4 times the NMW | Alcobendas, Barcelona, Bilbao, Castelldefels, Getxo, Madrid, San Sebastián/Donostia, Vitoria/Gasteiz |
Group 5: income greater than 4 times the NMW | Boadilla del Monte, Majadahonda, Pozuelo de Alarcón, Rozas de Madrid (Las), Sant Cugat del Vallès |
POPULATION | NUMBEROF HOUSEHOLDS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Equivalized Disposable Income | Total | Mean | Std. Dev. | Median | Maximum | Minimum | Total | Mean | Std. Dev. | Median | Maximum | Minimum |
Group 1 | 3,310,409 | 87,116 | 38,473 | 76,624 | 228,675 | 52,620 | 1,220,128 | 32,109 | 13,571 | 29,249 | 83,182 | 18,927 |
Group 2 | 11,954,158 | 157,292 | 140,553 | 104,380 | 787,808 | 50,334 | 4,517,519 | 59,441 | 53,452 | 41,936 | 312,339 | 17,901 |
Group 3 | 2,960,859 | 164,492 | 142,846 | 112,815 | 664,938 | 57,723 | 1,188,755 | 66,042 | 59,001 | 46,331 | 269,347 | 21,470 |
Group 4 | 5,841,470 | 730,184 | 1,116,856 | 216,673 | 3,182,981 | 65,954 | 2,345,167 | 293,146 | 445,649 | 90,617 | 1,262,282 | 23,811 |
Group 5 | 392,954 | 78,591 | 17,530 | 85,605 | 95,071 | 51,463 | 122,900 | 24,580 | 5963 | 26,291 | 29,937 | 15,434 |
MWh/Year | ||||||
---|---|---|---|---|---|---|
Equivalized Disposable Income | Total | Mean | Std. Dev. | Median | Maximum | Minimum |
Group 1 | 1,501,718 | 39,519 | 67,369 | 19,955 | 354,793 | 0 |
Group 2 | 14,435,580 | 189,942 | 171,343 | 140,476 | 643,146 | 0 |
Group 3 | 6,815,922 | 378,662 | 400,478 | 234,313 | 1,627,614 | 78,422 |
Group 4 | 15,059,610 | 1,882,451 | 3,062,082 | 550,718 | 8,969,965 | 140,304 |
Group 5 | 1,045,547 | 209,109 | 47,470 | 200,928 | 267,920 | 145,028 |
MWh/Year | |||||
---|---|---|---|---|---|
Equivalized Disposable Income | Mean | Std. Dev. | Median | Maximum | Minimum |
Group 1 | 1.11 | 1.57 | 0.69 | 8.29 | 0.00 |
Group 2 | 3.89 | 2.72 | 4.36 | 8.43 | 0.00 |
Group 3 | 5.53 | 2.15 | 5.67 | 8.65 | 1.94 |
Group 4 | 6.29 | 1.63 | 5.79 | 8.80 | 4.44 |
Group 5 | 8.46 | 1.17 | 8.99 | 9.16 | 6.38 |
MWh/Year | |||||
---|---|---|---|---|---|
Equivalized Disposable Income | Mean | Std. Dev. | Median | Maximum | Minimum |
Group 1 | 0.41 | 0.55 | 0.26 | 2.82 | 0.00 |
Group 2 | 1.48 | 1.00 | 1.76 | 3.28 | 0.00 |
Group 3 | 2.18 | 0.82 | 2.13 | 3.64 | 0.81 |
Group 4 | 2.48 | 0.64 | 2.28 | 3.76 | 1.88 |
Group 5 | 2.68 | 0.31 | 2.82 | 2.82 | 21.3 |
MWh/Year | |||||
---|---|---|---|---|---|
Equivalized Disposable Income | Mean | Std. Dev. | Median | Maximum | Minimum |
Group 1 | 1.59 | 1.76 | 0.80 | 7.39 | 0.00 |
Group 2 | 3.67 | 2.35 | 3.48 | 7.47 | 0.00 |
Group 3 | 4.63 | 1.62 | 4.60 | 7.23 | 1.87 |
Group 4 | 5.62 | 0.98 | 5.68 | 7.33 | 4.30 |
Group 5 | 6.50 | 0.89 | 6.11 | 8.09 | 5.96 |
MWh/Year | |||||
---|---|---|---|---|---|
Equivalized Disposable Income | Mean | Std. Dev. | Median | Maximum | Minimum |
Group 1 | 0.60 | 0.64 | 0.33 | 2.69 | 0.00 |
Group 2 | 1.39 | 0.87 | 1.48 | 2.69 | 0.00 |
Group 3 | 1.79 | 0.62 | 1.81 | 2.69 | 0.72 |
Group 4 | 2.17 | 0.44 | 2.05 | 2.69 | 1.66 |
Group 5 | 2.09 | 0.33 | 1.94 | 2.69 | 1.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarco-Periñán, P.J.; Zarco-Soto, I.M.; Zarco-Soto, F.J.; Sánchez-Durán, R. Influence of Population Income on Energy Consumption for Heating and Its CO2 Emissions in Cities. Energies 2021, 14, 4531. https://doi.org/10.3390/en14154531
Zarco-Periñán PJ, Zarco-Soto IM, Zarco-Soto FJ, Sánchez-Durán R. Influence of Population Income on Energy Consumption for Heating and Its CO2 Emissions in Cities. Energies. 2021; 14(15):4531. https://doi.org/10.3390/en14154531
Chicago/Turabian StyleZarco-Periñán, Pedro J., Irene M. Zarco-Soto, Fco. Javier Zarco-Soto, and Rafael Sánchez-Durán. 2021. "Influence of Population Income on Energy Consumption for Heating and Its CO2 Emissions in Cities" Energies 14, no. 15: 4531. https://doi.org/10.3390/en14154531
APA StyleZarco-Periñán, P. J., Zarco-Soto, I. M., Zarco-Soto, F. J., & Sánchez-Durán, R. (2021). Influence of Population Income on Energy Consumption for Heating and Its CO2 Emissions in Cities. Energies, 14(15), 4531. https://doi.org/10.3390/en14154531