Microscale Evaluation of Tight Oil Mobility: Insights from Pore Network Simulation
Abstract
:1. Introduction
2. Reconstruction of Pore Network Model
3. Pore Network Model Simulation
3.1. Water Phase Flow Characteristics
3.2. Oil Phase Flow Characteristics
4. Results and Discussion
4.1. Evaluation of Reservoir Flow Characteristics
4.2. Effects of Organic Matter on Flow Characteristics
5. Summary and Conclusions
- The shale oil reservoir is mainly nanopore, and the bound water saturation is high, reaching 0.3. However, the permeability of the water phase is extremely low when water saturation is less than 0.4. The two-phase co-seepage area is only 0.457. Low co-seepage area means less recoverable oil from the reservoir.
- With the increase in organic matter content, the relative permeabilities of water phase are identical at low water saturation, but gradually increase at high water saturation. This is because, at high water saturation, the continuity of the water phase is enhanced, and the promoting effect of organic matter on water phase seepage is more obvious.
- With the increase in organic matter content, the isosmotic point of oil–water phase permeability shifts to the left, indicating that the wettability of the water phase gradually weakens.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; He, S.; Han, Y.; Zhai, G.; He, X.; Zhou, Z. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. J. Earth Sci. 2019, 31, 368–384. [Google Scholar] [CrossRef]
- Maugeri, L. The Shale Oil Boom: A US Phenomenon; Harvard Kennedy School Belfer Center for Science and International Affairs, Harvard Kennedy School: Cambridge, MA, USA, 2013; Discussion Paper 2013-05. [Google Scholar]
- Zanganeh, B.; Ahmadi, M.; Hanks, C.; Awoleke, O. The role of hydraulic fracture geometry and conductivity profile, unpropped zone conductivity and fracturing fluid flowback on production performance of shale oil wells. J. Unconv. Oil Gas Resour. 2015, 9, 103–113. [Google Scholar] [CrossRef]
- Feng, Q.; Xu, S.; Xing, X.; Zhang, W.; Wang, S. Advances and challenges in shale oil development: A critical review. Adv. Geo-Energy Res. 2020, 4, 406–418. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, C.; Liu, D.; Jiang, S.; Luo, Q.; Zeng, J.; Liu, L.; Luo, L.; Shao, H.; Liu, D.; et al. Disequilibrium partial melting of metasediments in subduction zones: Evidence from O-Nd-Hf isotopes and trace elements in S-type granites of the Chinese Altai. Lithosphere 2018, 11, 149–168. [Google Scholar] [CrossRef]
- Zhao, W.; Jia, C.; Jiang, L.; Zhang, T.; He, M.; Zhang, F.; Jiang, Z.; Li, X.; Wu, K. Fluid charging and hydrocarbon accumulation Rio de Janeiro in the sweet spot, Ordos Basin, China. J. Pet. Sci. Eng. 2021, 200, 108391. [Google Scholar] [CrossRef]
- Pei, F.; Xu, W.; Yang, D.; Zhao, Q.; Liu, X.; Hu, Z. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin. Chin. Sci. Bull. 2007, 52, 942–948. [Google Scholar] [CrossRef]
- Li, Q.; Kang, C.; Wang, H.; Liu, C.; Zhang, C. Application of microbial enhanced oil recovery technique to Daqing Oilfield. Biochem. Eng. J. 2002, 11, 197–199. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, T.; Jia, C.; Li, X.; Wu, K.; He, M. Numerical simulation on natural gas migration and accumulation in sweet spots of tight reservoir. J. Nat. Gas Sci. Eng. 2020, 81, 103454. [Google Scholar] [CrossRef]
- Han, G.; Liu, Y.; Nawnit, K.; Zhou, Y. Discussion on seepage governing equations for low permeability reservoirs with a threshold pressure gradient. Adv. Geo-Energy Res. 2018, 2, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Jia, C.; Zhang, T.; Jiang, L.; Li, X.; Jiang, Z.; Zhang, F. Effects of nanopore geometry on confined water flow: A view of lattice Boltzmann simulation. Chem. Eng. Sci. 2021, 230, 116183. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Li, C.; Ning, F.; Liu, C.; Wu, N.; Cai, J. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic, mechanical, and electrical properties of hydrate-bearing sediments. J. Nat. Gas Sci. Eng. 2020, 75, 103109. [Google Scholar] [CrossRef]
- Honarpour, M.; Mahmood, S. Relative-Permeability Measurements: An Overview. J. Pet. Technol. 1988, 40, 963–966. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Hu, X.; Xiao, B.; Zhou, Y.; Wei, W. Recent developments on fractal-based approaches to nanofluids and nanoparticle aggregation. Int. J. Heat Mass Transf. 2017, 105, 623–637. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Zhou, Y.; Wu, K.; Hu, Y.; Feng, D.; Zhang, T.; Liu, Q.; Li, X. Pore network modeling of thin water film and its influence on relative permeability curves in tight formations. Fuel 2021, 289, 119828. [Google Scholar] [CrossRef]
- Cai, J.; Hajibeygi, H.; Yao, J.; Hassanizadeh, S.M. Advances in porous media science and engineering from InterPore2020 perspective. Adv. Geo-Energy Res. 2020, 4, 352–355. [Google Scholar] [CrossRef]
- Berg, S.; Unsal, E.; Dijk, H. Non-uniqueness and uncertainty quantification of relative permeability measurements by inverse modelling. Comput. Geotech. 2021, 132, 103964. [Google Scholar] [CrossRef]
- Singh, H.; Mahabadi, N.; Myshakin, E.M.; Seol, Y. A Mechanistic Model for Relative Permeability of Gas and Water Flow in Hydrate-Bearing Porous Media With Capillarity. Water Resour. Res. 2019, 55, 3414–3432. [Google Scholar] [CrossRef]
- He, M.; Zhou, Y.; Chen, B.; Zhang, T.; Wu, K.; Feng, D.; Li, X. Effect of Pore Structure on Slippage Effect in Unsaturated Tight Formation Using Pore Network Model. Energy Fuels 2021, 35, 5789–5800. [Google Scholar] [CrossRef]
- Gostick, J.T.; Ioannidis, M.; Fowler, M.W.; Pritzker, M.D. Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells. J. Power Sources 2007, 173, 277–290. [Google Scholar] [CrossRef]
- Maalal, O.; Prat, M.; Lasseux, D. Pore network model of drying with Kelvin effect. Phys. Fluids 2021, 33, 027103. [Google Scholar] [CrossRef]
- Raeini, A.Q.; Yang, J.; Bondino, I.; Bultreys, T.; Blunt, M.J.; Bijeljic, B. Validating the Generalized Pore Network Model Using Micro-CT Images of Two-Phase Flow. Transp. Porous Media 2019, 130, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Raeini, A.Q.; Wang, Y.; Blunt, M.J.; Wang, M. An improved pore-network model including viscous coupling effects using direct simulation by the lattice Boltzmann method. Adv. Water Resour. 2017, 100, 26–34. [Google Scholar] [CrossRef]
- Wood, D.A.; Hazra, B. Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 1: Bulk properties, multi-scale geometry and gas adsorption. J. Earth Sci. 2017, 28, 739–757. [Google Scholar] [CrossRef]
- Aljasmi, A.; Sahimi, M. Fast simulation of two-phase flow in three-dimensional digital images of heterogeneous porous media using multiresolution curvelet transformation. Adv. Water Resour. 2021, 150, 103882. [Google Scholar] [CrossRef]
- Viswanathan, H.S.; Hyman, J.D.; Karra, S.; O’Malley, D.; Srinivasan, S.; Hagberg, A. Advancing Graph-Based Algorithms for Predicting Flow and Transport in Fractured Rock. Water Resour. Res. 2018, 54, 6085–6099. [Google Scholar] [CrossRef]
- Kohanpur, A.H.; Valocchi, A.J. Pore-Network Stitching Method: A Pore-to-Core Upscaling Approach for Multiphase Flow. Transp. Porous Media 2020, 135, 659–685. [Google Scholar] [CrossRef]
- Bo, D.; Jiang, L.; Zhao, W.; Jiang, Y.; Liu, H.; Ou, H. Geochemical Characteristics and Oil Source Correlation of Minfeng Area, Dongying Depression, China. Geofluids 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Cesare, B.; Parisatto, M.; Mancini, L.; Peruzzo, L.; Franceschi, M.; Tacchetto, T.; Reddy, S.; Spiess, R.; Nestola, F.; Marone, F. Mineral inclusions are not immutable: Evidence of post-entrapment thermally-induced shape change of quartz in garnet. Earth Planet. Sci. Lett. 2021, 555, 116708. [Google Scholar] [CrossRef]
- Wardlaw, N.C.; Li, Y.; Forbes, D. Pore-throat size correlation from capillary pressure curves. Transp. Porous Media 1987, 2, 597–614. [Google Scholar] [CrossRef]
- Ferreira, F.C.; Booth, R.; Oliveira, R.; Boyd, A.; Bize-Forest, N.; Wahanik, H. Truncated Multi-Gaussian Pore-Throat-Size Decomposition and a New Universal J-Function for Rock Characterization of Complex Carbonate Reservoirs; OTC Brasil: Rio de Janeiro, Brazil, 2015. [Google Scholar] [CrossRef]
- Dong, H.; Blunt, M. Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 2009, 80, 036307. [Google Scholar] [CrossRef] [Green Version]
- Dullien, F.A. Porous Media: Fluid Transport and Pore Structure; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Nguyen, V.H.; Sheppard, A.; Knackstedt, M.A.; Pinczewski, W.V. The effect of displacement rate on imbibition relative permeability and residual saturation. J. Pet. Sci. Eng. 2006, 52, 54–70. [Google Scholar] [CrossRef]
- Wu, P.; Nikolov, A.; Wasan, D. Capillary dynamics driven by molecular self-layering. Adv. Colloid Interface Sci. 2017, 243, 114–120. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, J.J. Experimental investigation of surfactant enhanced spontaneous imbibition in Chinese shale oil reservoirs using NMR tests. J. Ind. Eng. Chem. 2019, 72, 414–422. [Google Scholar] [CrossRef]
- Heckbert, P.S. A seed fill algorithm. Graph. Gems 1990, 275, 275–277. [Google Scholar] [CrossRef]
- Wu, Y.; Pruess, K.; Persoff, P. Gas Flow in Porous Media with Klinkenberg Effects. Transp. Porous Media 1998, 32, 117–137. [Google Scholar] [CrossRef]
- Huang, D.; Sendner, C.; Horinek, D.; Netz, R.R.; Bocquet, L. Water Slippage versus Contact Angle: A Quasiuniversal Relationship. Phys. Rev. Lett. 2008, 101, 226101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xia, Y.; Feng, Z.; Shao, H.; Qiu, J.; Ma, S.; Zhang, J.; Jiang, H.; Li, J.; Gao, B.; et al. Microscale Evaluation of Tight Oil Mobility: Insights from Pore Network Simulation. Energies 2021, 14, 4580. https://doi.org/10.3390/en14154580
Wang Y, Xia Y, Feng Z, Shao H, Qiu J, Ma S, Zhang J, Jiang H, Li J, Gao B, et al. Microscale Evaluation of Tight Oil Mobility: Insights from Pore Network Simulation. Energies. 2021; 14(15):4580. https://doi.org/10.3390/en14154580
Chicago/Turabian StyleWang, Yongchao, Yanqing Xia, Zihui Feng, Hongmei Shao, Junli Qiu, Suping Ma, Jiaqiang Zhang, Haoyuan Jiang, Jiyong Li, Bo Gao, and et al. 2021. "Microscale Evaluation of Tight Oil Mobility: Insights from Pore Network Simulation" Energies 14, no. 15: 4580. https://doi.org/10.3390/en14154580
APA StyleWang, Y., Xia, Y., Feng, Z., Shao, H., Qiu, J., Ma, S., Zhang, J., Jiang, H., Li, J., Gao, B., & Li, L. (2021). Microscale Evaluation of Tight Oil Mobility: Insights from Pore Network Simulation. Energies, 14(15), 4580. https://doi.org/10.3390/en14154580