Experimental Comparison between Spherical and Refractive Optics in a Concentrating Photovoltaic System
Abstract
:1. Introduction
2. Experimental Point-Focus CPV System
3. Optical and Energy Performance
3.1. Optical Analysis
3.2. Energy Analysis
4. Results and Discussion
4.1. Optical Comparison
4.2. Energy Comparison
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
A | area (m2) |
Cgeo | geometrical concentration factor |
Copt | optical concentration factor |
CPV | Concentrating Photovoltaic system |
CPV/T | Concentrating Photovoltaic and Thermal system |
DNI | Direct Normal Irradiance (W/m2) |
hL-C | Fresnel lens-TJ cell distance (m) |
hM-C | spherical mirror–TJ cell distance (m) |
P | electric power (W) |
Rc | concentrated solar radiation (kW/m2) |
T | temperature (°C) |
TJ | Triple-Junction cell |
efficiency | |
θ | angle (°) |
Subscripts | |
c | cell |
conc | concentrator |
el | electric |
env | environmental |
mis | misalignment |
opt | optical |
References
- Kandilli, C. Performance analysis of a novel concentrating photovoltaic combined system. Energy Convers. Manag. 2013, 67, 186–196. [Google Scholar] [CrossRef]
- Chen, S.X.; Gooi, H.B.; Wang, M.Q. Solar radiation forecast based on fuzzy logic and neural networks. Renew. Energy 2013, 60, 195–201. [Google Scholar] [CrossRef]
- Renno, C. Theoretical and experimental evaluation of the working fluid temperature levels in a CPV/T system. Energies 2020, 166, 3077. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C.; Antonopoulos, K.A.; Gkinis, G. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew. Energy 2016, 94, 213–222. [Google Scholar] [CrossRef]
- Rejeb, O.; Shittu, S.; Ghenai, C.; Li, G.; Zhao, X.; Bettayeb, M. Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system. Renew. Energy 2020, 152, 1342–1353. [Google Scholar] [CrossRef]
- Garcia-Domingo, B.; Piliougine, M.; Elizondo, D.; Aguilera, J. CPV module electric characterisation by artificial neural networks. Renew. Energy 2015, 78, 173–181. [Google Scholar] [CrossRef]
- Theristis, M.; Fernández, E.F.; Almonacid, F.; Georghiou, G.E. Spectral correction of CPV modules equipped with GaInP/GaInAs/Ge solar cells and fresnel lenses. Appl. Sci. 2017, 7, 842. [Google Scholar] [CrossRef] [Green Version]
- Shanks, K.; Senthilarasu, S.; Tapas, K. Mallick. Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renew. Sustain. Energy Rev. 2016, 60, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Renno, C. Optimization of a concentrating photovoltaic thermal (CPV/T) system used for a domestic application. Appl. Therm. Eng. 2014, 67, 396–408. [Google Scholar] [CrossRef]
- Serrano-Aguilera, J.J.; Valenzuela, L.; Fernandez-Reche, J. Inverse Monte Carlo Ray-Tracing method (IMCRT) applied to line-focus reflectors. Sol. Energy 2016, 124, 84–197. [Google Scholar] [CrossRef]
- Tien, N.X.; Shin, S. A novel concentrator photovoltaic (CPV) system with the improvement of irradiance uniformity and the capturing of diffuse solar radiation. Appl. Sci. 2016, 6, 251. [Google Scholar] [CrossRef] [Green Version]
- Enteria, N.; Akbarzadeh, A. Solar Energy Sciences and Engineering Applications; CRC Press: Boca Raton, FL, USA, 2014; pp. 545–788. [Google Scholar] [CrossRef]
- Renno, C.; Landi, G.; Petito, F.; Neitzert, H.C. Influence of a degraded triple-junction solar cell on the CPV system performances. Energy Convers. Manag. 2018, 160, 326–340. [Google Scholar] [CrossRef]
- Renno, C.; Petito, F.; Landi, G.; Neitzert, H.C. Experimental characterization of a concentrating photovoltaic system varying the light concentration. Energy Convers. Manag. 2017, 138, 119–130. [Google Scholar] [CrossRef]
- Victoria, M.; Askins, S.; Herrero, R.; Antón, I.; Sala, G. Assessment of the optical efficiency of a primary lens to be used in a CPV system. Sol. Energy 2016, 134, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Soni, M.S.; Gakkhar, N. Techno-economic parametric assessment of solar power in India: A survey. Renew Sustain. Energy Rev. 2014, 40, 326–334. [Google Scholar] [CrossRef]
- Burhan, M.; Shahzad, M.W.; Ng, K.C. Long-term performance potential of concentrated photovoltaic (CPV) systems. Energy Convers. Manag. 2017, 148, 90–99. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, H.J.; Kim, W.; Chun, W.; Han, H.J.; Lim, S.H. A comparative performance analysis on daylighting for two different types of solar concentrators: Dish vs. Fresnel lens. Energy 2017, 137, 449–456. [Google Scholar] [CrossRef]
- Pan, X.; Ju, X.; Xu, C.; Du, X.; Yang, Y. A novel rotational symmetry (RS) connection approach for dense-array concentrator photovoltaic (DA-CPV) modules. Energy Convers. Manag. 2019, 181, 359–371. [Google Scholar] [CrossRef]
- Lokeswaran, S.; Mallick, T.K.; Reddy, K.S. Design and analysis of dense array CPV receiver for square parabolic dish system with CPC array as secondary concentrator. Sol. Energy 2020, 199, 782–795. [Google Scholar] [CrossRef]
- Renno, C. Experimental and Theoretical Analysis of a Linear Focus CPV/T System for Cogeneration Purposes. Energies 2018, 11, 2960. [Google Scholar] [CrossRef] [Green Version]
- Widyolar, B.; Jiang, L.; Abdelhamid, M.; Winston, R. Design and modeling of a spectrum-splitting hybrid CSP-CPV parabolic trough using two-stage high concentration optics and dual junction InGaP/GaAs solar cells. Sol. Energy 2018, 165, 75–84. [Google Scholar] [CrossRef]
- Renno, C.; D’Agostino, D.; Minichiello, F.; Petito, F.; Balen, I. Performance analysis of a CPV/T-DC integrated system adopted for the energy requirements of a supermarket. Appl. Therm. Eng. 2019, 149, 231–248. [Google Scholar] [CrossRef]
- Hornung, T.; Steiner, M.; Nitz, P. Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system. Sol. Energy Mater. Sol. Cells 2012, 99, 333–338. [Google Scholar] [CrossRef]
- Aprea, C.; Renno, C. An air cooled tube-fin evaporator model for an expansion valve control law. Math. Comput. Model. 1999, 30, 135–146. [Google Scholar] [CrossRef]
- Renno, C.; Petito, F. Triple-junction cell temperature evaluation in a CPV system by means of a Random-Forest model. Energy Convers. Manag. 2018, 169, 124–136. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
material | InGaP/InGaAs/Ge |
size | 0.01 m × 0.01 m |
open circuit voltage (at 25 °C, 50 W/cm2) | 2.94 V |
short circuit current (at 25 °C, 50 W/cm2) | 4.49 A |
(at 25 °C, 50 W/cm2) | 39.0% |
temperature coefficient () | −0.04%/K |
Case | Secondary Optics | R² | |||||
---|---|---|---|---|---|---|---|
yes | 0.4143 | 0.1787 | // | // | // | 0.9794 | |
no | 0.3301 | 0.2460 | // | // | // | 0.9871 | |
yes | // | // | 0.5626 | −57.25 | 1466 | 0.9876 | |
no | −0.2690 | // | // | // | 0.9694 |
Case | condary Optics | R² | |||||
---|---|---|---|---|---|---|---|
yes | // | // | 12.47 | −626.5 | 7917 | 0.9774 | |
no | // | // | 7.902 | −253.6 | 2043 | 0.9842 | |
yes | // | // | 12.22 | −920.7 | 0.9704 | ||
no | −0.4830 | // | // | // | 0.9777 |
Equation | R² | ||||
---|---|---|---|---|---|
(7) Fresnel L. | 14.75 | −35.05 | // | // | 0.9716 |
(7) Spherical M. | 19.05 | −53.94 | // | // | 0.9606 |
(8) Fresnel L. | // | // | 0.0324 | 0.0326 | 0.9755 |
(8) Spherical M. | // | // | 0.0111 | −0.1528 | 0.9891 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renno, C. Experimental Comparison between Spherical and Refractive Optics in a Concentrating Photovoltaic System. Energies 2021, 14, 4603. https://doi.org/10.3390/en14154603
Renno C. Experimental Comparison between Spherical and Refractive Optics in a Concentrating Photovoltaic System. Energies. 2021; 14(15):4603. https://doi.org/10.3390/en14154603
Chicago/Turabian StyleRenno, Carlo. 2021. "Experimental Comparison between Spherical and Refractive Optics in a Concentrating Photovoltaic System" Energies 14, no. 15: 4603. https://doi.org/10.3390/en14154603
APA StyleRenno, C. (2021). Experimental Comparison between Spherical and Refractive Optics in a Concentrating Photovoltaic System. Energies, 14(15), 4603. https://doi.org/10.3390/en14154603