Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Carbon Emissions of Chinese RBCs and Uncertainty Analysis
3.2. Effects of HSR Lines on the Carbon Intensity of Chinese RBCs
3.3. Data Sources
4. Results
4.1. Temporal and Spatial Distributions of RBCs in China
4.2. Baseline Results of Time-Varying DID Estimation
4.3. Robustness Check
4.4. Heterogeneous Effects for Different Types of RBC
4.5. Mediating Factors
5. Discussions
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Lu, F. Economic effects of high-speed rail: Emission reduction and efficiency enhancement. Stat. Res. 2021, 38, 29–44. (In Chinese) [Google Scholar]
- Otsuka, A. Assessment of the improvement in energy intensity by the new high-speed railway in Japan. Asia Pac. J. Reg. Sci. 2020, 4, 1–16. [Google Scholar] [CrossRef]
- Westin, J.; Kageson, P. Can high speed rail offset its embedded emissions? Transp. Res. Part D Transport Environ. 2012, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Xue, J.; Rose, A.Z.; Haynes, K.E. The impact of High-Speed Rail investment on economic and environmental change in China: A dynamic CGE analysis. Transp. Res. Part A Policy Pract. 2016, 92, 232–245. [Google Scholar] [CrossRef]
- Chang, Y.; Lei, S.; Teng, J.; Zhang, J.; Zhang, L.; Xu, X. The energy use and environmental emission of high-speed rail transportation in China: A bottom-up modeling. Energy 2019, 182, 1193–1201. [Google Scholar] [CrossRef]
- Yu, C.; Li, H.; Jia, X.; Li, Q. Improving resource utilization efficiency in China’s mineral resource-based cities: A case study of Chengde, Hebei province. Resour. Conserv. Recycl. 2015, 94, 1–10. [Google Scholar] [CrossRef]
- Chen, W.; Chen, W.; Ning, S.; Liu, E.; Zhou, X.; Wang, Y.; Zhao, M. Exploring the industrial land use efficiency of China’s resource-based cities. Cities 2019, 93, 215–223. [Google Scholar] [CrossRef]
- Yan, D.; Kong, Y.; Ye, B.; Shi, Y.; Zeng, X. Spatial variation of energy efficiency based on a super-slack-based measure: Evidence from 104 resource-based cities. J. Clean. Prod. 2019, 240, 117669. [Google Scholar] [CrossRef]
- Hu, M.; Wadin, J.; Lo, H.; Huang, J. Transformation toward an eco-city: Lessons from three Asian cities. J. Clean. Prod. 2016, 123, 77–87. [Google Scholar] [CrossRef]
- He, S.; Lee, J.; Zhou, T.; Wu, D. Shrinking cities and resource-based economy: The economic restructuring in China’s mining cities. Cities 2017, 60, 75–83. [Google Scholar] [CrossRef]
- Li, H.; Long, R.; Chen, H. Economic transition policies in Chinese resource-based cities: An overview of government efforts. Energy Policy 2013, 55, 251–260. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, L.; Qiu, Y.; Zhou, D. How have political incentives for local officials reduced environmental pollution in resource-depleted cities? Energy Procedia 2017, 143, 873–879. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, Y. The impact of industrial co-agglomeration on sustainable development of resource-based cities in China. J. Beijing Inst. Tech. 2021, 23, 1–14. (In Chinese) [Google Scholar]
- Li, W.; Yi, P.; Zhang, D.; Zhou, Y. Assessment of coordinated development between social economy and ecological environment: Case study of resource-based cities in Northeastern China. Sustain. Cities Soc. 2020, 59, 102208. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, P.; Lo, K.; Li, J.; Liu, S. Conceptualizing and measuring economic resilience of resource-based cities: Case study of northeast China. Chin. Geogr. Sci. 2017, 27, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dewan, H. Efficiency difference among China’s resource-based cities and their determinants. Resour. Policy 2017, 51, 31–38. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, H.; Chen, L.; Liu, X.; Gu, M.; Ke, X. Regional analysis of the green development level differences in Chinese mineral resource-based cities. Resour. Policy 2019, 61, 261–272. [Google Scholar] [CrossRef]
- Hu, X.; Yang, C. Institutional change and divergent economic resilience: Path development of two resource-depleted cities in China. Urban Stud. 2019, 56, 3466–3485. [Google Scholar] [CrossRef]
- Yan, D.; Kong, Y.; Ren, X.; Shi, Y.; Chiang, S. The determinants of urban sustainability in Chinese resource-based cities: A panel quantile regression approach. Sci. Total Environ. 2019, 686, 1210–1219. [Google Scholar] [CrossRef]
- Baum-Snow, N. Changes in transportation infrastructure and commuting patterns in US metropolitan areas: 1960–2000. Am. Econ. Rev. 2010, 100, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Arvin, M.; Pradhan, R.P.; Norman, N.R. Transportation intensity, urbanization, economic growth, and CO2 emission in the G20 countries. Util. Policy 2015, 35, 50–66. [Google Scholar] [CrossRef]
- Jiang, X.S.; He, X.; Zhang, L.; Qin, H.H.; Shao, F.R. Multimodal transportation infrastructure investment and regional economic development: A structural equation modeling empirical analysis in China from 1986 to 2011. Transp. Policy 2017, 54, 43–52. [Google Scholar] [CrossRef]
- Joumard, R.; Nicolas, J. Transport project assessment methodology within the framework of sustainable development. Ecol. Indic. 2010, 10, 136–142. [Google Scholar] [CrossRef]
- Chang, Y.; Yang, Y.; Dong, S. Comprehensive sustainability evaluation of High-Speed Railway (HSR) construction projects based on unascertained measure and analytic hierarchy process. Sustainability 2018, 10, 408. [Google Scholar] [CrossRef] [Green Version]
- Jacyna, M.; Wasiak, M.; Lewczuk, K.; Karon, G. Noise and environmental pollution from transport: Decisive problems in developing ecologically efficient transport systems. J. Vibroeng. 2017, 19, 5639–5655. [Google Scholar] [CrossRef]
- Kim, N.S.; Van, W.B. Toward a better methodology for assessing CO2 emissions for intermodal and truck-only freight systems: A European case study. Int. J. Sustain. Transp. 2014, 8, 177–201. [Google Scholar] [CrossRef]
- Fan, Y.V.; Perry, S.; Klemes, J.J.; Lee, C.T. A review on air emissions assessment: Transportation. J. Clean. Prod. 2018, 194, 673–684. [Google Scholar] [CrossRef]
- Chakraborty, J. Evaluating the environmental justice impacts of transportation improvement projects in the US. Transp. Res. Part D Transp. Environ. 2006, 11, 315–323. [Google Scholar] [CrossRef]
- Walmsley, M.R.; Walmsley, T.G.; Atkins, M.J.; Kamp, P.J.; Neale, J.R.; Chand, A. Carbon emission pinch analysis for emissions reductions in the New Zealand transport sector through to 2050. Energy 2015, 92, 569–576. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, D.; Liu, H.; He, Z.; Shi, L. Green transportation scheduling with pickup time and transport mode selections using a novel multi-objective memetic optimization approach. Transp. Res. 2018, 60, 137–152. [Google Scholar] [CrossRef]
- Peeters, P.; Szimba, E.; Duijinisveld, M. Major environmental impacts of European tourist transport. J. Transp. Geogr. 2007, 15, 83–93. [Google Scholar] [CrossRef]
- Gagatsi, E.; Estrup, T.; Halatsis, A. Exploring the potentials of electrical waterborne transport in Europe: The E-ferry concept. Transp. Res. Procedia 2016, 14, 1571–1580. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Deng, Q.; Zhang, J.; Olanipekun, A.O.; Lyu, S. Environmental impact assessment of transportation infrastructure in the life cycle: Case study of a fast track transportation project in China. Energies 2019, 12, 1015. [Google Scholar] [CrossRef] [Green Version]
- Ge, B.; Wang, Z.; Lin, W.; Xu, X.; Li, J.; Ji, D.; Ma, Z. Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences. Environ. Pollut. 2018, 234, 29–38. [Google Scholar] [CrossRef]
- Kishimoto, P.N.; Karplus, V.J.; Zhong, M.; Saikawa, E.; Zhang, X.; Zhang, X. The impact of coordinated policies on air pollution emissions from road transportation in China. Transp. Res. Part D Transp. Environ. 2017, 54, 30–49. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Cui, Y. Evaluating the coordinated development of economic, social and environmental benefits of urban public transportation infrastructure: Case study of four Chinese autonomous municipalities. Transp. Policy 2018, 66, 116–126. [Google Scholar] [CrossRef]
- Ke, X.; Chen, H.; Hong, Y.; Hsiao, C. Do China’s high-speed-rail project promote local economy? New evidence from a panel data approach. China Econ. Rev. 2017, 44, 203–226. [Google Scholar] [CrossRef]
- Chen, C.L.; Hall, P. The impacts of high-speed trains on British economic geography: A study of UK’s intercity 125/225 and its effects. J. Transp. Geogr. 2011, 19, 689–704. [Google Scholar] [CrossRef]
- Chen, C.L. Reshaping Chinese space-economy through high-speed trains: Opportunities and challenges. J. Transp. Geogr. 2012, 22, 312–316. [Google Scholar] [CrossRef]
- Song, M.; Zhang, G.; Zeng, W.; Liu, J.; Fang, K. Railway transportation and environmental efficiency in China. Transp. Res. Part D Transp. Environ. 2016, 48, 488–498. [Google Scholar] [CrossRef]
- Yang, X.; Lin, S.; Li, Y.; He, M. Can high-speed rail reduce environmental pollution? Evidence from China. J. Clean. Prod. 2019, 239, 118135. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006. [Google Scholar]
- Guan, D.; Meng, J.; Reiner, D.; Zhang, N.; Shan, Y.; Mi, Z.; Shao, S.; Liu, Z.; Zhang, Q.; Davis, S. Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nat. Geosci. 2018, 11, 551–555. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, X.; Yan, Y. Statistical estimation method for energy consumption and carbon emissions by urban transport. China Soft Sci. 2014, 6, 142–150. (In Chinese) [Google Scholar]
- Chinese Central Government Portal Website. Available online: http://www.gov.cn/zwgk/2013-12/03/content_2540070.htm (accessed on 4 January 2021).
- Duflo, E.; Pande, R. Dames. Q. J. Econ. 2007, 122, 601–646. [Google Scholar] [CrossRef]
- Rosenbaum, P.; Rubin, D. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Abadie, A.; Imbens, G. Matching on the estimated propensity score. Econometrica 2016, 84, 781–807. [Google Scholar] [CrossRef]
- Acemoglu, D.; Moscona, J.; Robinson, J. State capacity and American technology: Evidence from the nineteenth century. Am. Econ. Rev. 2016, 106, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Jia, R.; Shao, S.; Yang, L. High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach. Energ. Econ. 2021, 99, 105271. [Google Scholar] [CrossRef]
- Bueno, G.; Hoyos, D.; Capellán-Pérez, I. Evaluating the environmental performance of the high speed rail project in the Basque Country, Spain. Res. Transp. Econ. 2017, 62, 44–56. [Google Scholar] [CrossRef]
- Guo, X.; Sun, W.; Yao, S.; Zheng, S. Does high-speed railway reduce air pollution along highways? Evidence from China. Transp. Res. Part D Transp. Environ. 2020, 89, 102607. [Google Scholar] [CrossRef]
Province | Variation | Province | Variation | Province | Variation |
---|---|---|---|---|---|
Hebei | ±0.62% | Fujian | ±1.71% | Sichuan | ±3.03% |
Shanxi | ±0.85% | Jiangxi | ±1.51% | Guizhou | ±4.10% |
Inner Mongolia | ±0.83% | Shandong | ±1.07% | Yunnan | ±2.62% |
Liaoning | ±1.51% | Henan | ±1.46% | Tibet | ±1.01% |
Jilin | ±1.30% | Hubei | ±2.86% | Shaanxi | ±1.57% |
Heilongjiang | ±1.92% | Hunan | ±3.26% | Gansu | ±1.45% |
Jiangsu | ±0.99% | Guangdong | ±2.61% | Qinghai | ±2.66% |
Zhejiang | ±1.68% | Guangxi | ±1.59% | Ningxia | ±0.41% |
Anhui | ±1.22% | Hainan | ±3.12% | Xinjiang | ±1.01% |
Variable | Definition | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
Carbon intensity | 1856 | 0.443 | 0.581 | 0.016 | 6.929 | |
Innovation level | 1856 | 0.251 | 0.583 | 0.001 | 9.392 | |
Openness level | 1856 | 0.107 | 0.149 | 0.000 | 1.548 | |
Financial self-sufficiency | 1856 | 0.425 | 0.182 | 0.055 | 1.116 | |
Industrial structure | 1856 | 0.502 | 0.124 | 0.090 | 0.910 | |
Terrain slope | 1856 | 2.608 | 2.047 | 0.040 | 11.820 | |
M | Migration | 1856 | 41.326 | 294.279 | 0.000 | 10719.080 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
−0.135 *** (0.023) | −0.132 *** (0.023) | −0.058 ** (0.025) | −0.054 ** (0.025) | −0.067 ** (0.026) | |
−0.122 *** (0.017) | −0.126 *** (0.017) | −0.098 *** (0.017) | |||
0.217 *** (0.004) | 0.351 *** (0.004) | 0.285 (0.444) | |||
0.356 *** (0.107) | 0.345 ** (0.115) | 0.186 (0.120) | |||
0.051 (0.127) | −0.031 (0.131) | −0.001 (0.149) | |||
0.478 *** (0.047) | 0.472 *** (0.009) | 0.306 *** (0.082) | 0.349 *** (0.076) | 1.090 *** (0.237) | |
1856 | 1856 | 1856 | 1856 | 1856 | |
—— | —— | —— | —— | 7260.1 | |
0.025 | 0.018 | 0.056 | 0.056 | 0.281 |
Variable | (1) PSM-DID Model | (2) Two Lag Periods | (3) Random Sample Exclusion |
---|---|---|---|
−0.068 ** (0.025) | −0.027 (0.028) | −0.076 *** (0.025) | |
−0.109 (0.180) | −0.117 *** (0.017) | −0.096 *** (0.017) | |
0.177 (0.477) | 0.367 (0.463) | 0.294 (0.444) | |
0.226 * (0.117) | 0.488 *** (0.129) | 0.178 *** (0.119) | |
−0.061 (0.134) | −0.045 (0.144) | −0.005 (0.140) | |
0.419 *** (0.078) | 0.272 *** (0.079) | 0.392 *** (0.081) | |
1656 | 1856 | 1600 | |
0.042 | 0.055 | 0.045 |
Variable | (1) Growth Type | (2) Mature Type | (3) Recessive Type | (4) Regenerative Type |
---|---|---|---|---|
−0.029 (0.035) | −0.078 *** (0.017) | −0.709 *** (0.110) | −0.072 (0.085) | |
−0.631 *** (0.162) | −0.073 *** (0.011) | −0.201 * (0.115) | −0.161 *** (0.029) | |
−0.040 (0.113) | 0.050 (0.045) | 0.655 ** (0.331) | 0.132 (0.115) | |
0.180 (0.163) | 0.296 ** (0.087) | 0.716 (0.477) | 0.066 (0.211) | |
−0.327 * (0.196) | −0.118 (0.094) | −0.339 (0.533) | 0.055 (0.358) | |
0.513 *** (0.106) | 0.346 *** (0.053) | 0.735 ** (0.311) | 0.386 ** (0.192) | |
240 | 1008 | 368 | 240 | |
0.106 | 0.107 | 0.185 | 0.200 |
Variable | (1) Forestry Type | (2) Oil-Gas Type | (3) Metallic Type | (4) Non-Metallic-Mineral Type | (5) Coal Type |
---|---|---|---|---|---|
−0.024 (0.044) | −0.188 *** (0.040) | −0.124 *** (0.018) | −0.005 (0.046) | −0.257 *** (0.043) | |
−0.745 *** (0.126) | −0.318 *** (0.032) | −0.134 *** 0.010) | −0.204 *** (0.045) | −0.050 (0.030) | |
0.104 (0.066) | −0.142 (0.091) | 0.073 * (0.044) | 0.215 ** (0.106) | −0.023 (0.028) | |
0.146 (0.304) | 0.280 * (0.158) | 0.195 ** (0.078) | 0.618 ** (0.233) | 0.107 (0.203) | |
−0.812 ** (0.268) | −0.885 *** (0.205) | 0.138 (0.107) | 0.403 (0.302) | −0.137 (0.229) | |
0.646 *** (0.079) | 0.875 *** (0.142) | 0.279 *** (0.062) | −0.165 (0.163) | 0.647 *** (0.120) | |
96 | 112 | 480 | 208 | 960 | |
0.362 | 0.609 | 0.413 | 0.164 | 0.053 |
Variable | (1) | (2) | (3) |
---|---|---|---|
Small City | Medium City | Big City | |
0.0493 | −0.127 ** | −0.040 | |
(0.035) | (0.051) | (0.035) | |
In | −0.321 *** | −0.059 ** | −0.217 *** |
(0.038) | (0.025) | (0.035) | |
Op | 0.118 | −0.028 | 0.397 *** |
(0.082) | (0.123) | (0.152) | |
Fi | 0.707 *** | −0.023 | 0.203 |
(0.153) | (0.217) | (0.209) | |
Is | −0.478 *** | 0.463 | 0.196 |
(0.160) | (0.287) | (0.243) | |
Constant | 0.437 *** | 0.316 * | 0.226 |
(0.086) | (0.175) | (0.147) | |
928 | 624 | 304 | |
R2 | 0.709 | 0.736 | 0.732 |
Variable | |||
---|---|---|---|
Equation (8) | Equation (9) | Equation (10) | |
−0.054 ** (0.025) | 0.565 *** (0.021) | −0.053 ** (0.024) | |
−0.0006 ** (0.0002) | |||
1856 | 1856 | 1856 | |
Control | |||
0.056 | 0.103 | 0.117 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Mei, Z.; Zou, J. Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities? Energies 2021, 14, 4648. https://doi.org/10.3390/en14154648
Tang Z, Mei Z, Zou J. Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities? Energies. 2021; 14(15):4648. https://doi.org/10.3390/en14154648
Chicago/Turabian StyleTang, Zhipeng, Ziao Mei, and Jialing Zou. 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?" Energies 14, no. 15: 4648. https://doi.org/10.3390/en14154648
APA StyleTang, Z., Mei, Z., & Zou, J. (2021). Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities? Energies, 14(15), 4648. https://doi.org/10.3390/en14154648