Fabrication of a Sensitive and Stable NiO Uric Acid Biosensor Using Ag Nanowires and Reduced Graphene Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the NiO Sensor
2.2. Preparation of the AgNWs Solution
2.3. Characteristics of the GO and rGO
2.4. Modified Electrode Based on NiO Film
3. Results
3.1. Roughness Analysis of the Sensing Films
3.2. Sensing Performance of Uricase/rGO/NiO and AgNW–Uricase/rGO/NiO Uric Acid Biosensors
3.3. Interference Effect of the Uric Acid Biosensor
3.4. Temperature Effect of the Uric Acid Biosensor
3.5. Stability of the Uric Acid Biosensor
3.6. Lifetime of the AgNW–Uricase/rGO/NiO Uric Acid Biosensor
3.7. Detection Limit of the AgNW–Uricase/rGO/NiO Uric Acid Biosensor
3.8. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lu, Y.; Yang, M.; Qu, F.; Shen, G.; Yu, R. Enzyme-functionalized gold nanowires for the fabrication of biosensors. Bioelectrochemistry 2007, 71, 211–216. [Google Scholar] [CrossRef]
- Sharma, S.; Byrne, H.; O’Kennedy, R.J. Antibodies and antibody-derived analytical biosensors. Essays Biochem. 2016, 60, 9–18. [Google Scholar] [CrossRef]
- Wang, L.; Gao, X.; Jin, L.; Wu, Q.; Chen, Z.; Lin, X. Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sens. Actuators B Chem. 2013, 176, 9–14. [Google Scholar] [CrossRef]
- Bujes-Garrido, J.; Arcos-Martínez, M.J. Disposable sensor for electrochemical determination of chloride ions. Talanta 2016, 155, 153–157. [Google Scholar] [CrossRef]
- Arslan, F.; Yaşar, A.; Kılıç, E.; Kilic, E. An Amperometric Biosensor for Xanthine Determination Prepared from Xanthine Oxidase Immobilized in Polypyrrole Film. Artif. Cells Blood Substit. Biotechnol. 2006, 34, 113–128. [Google Scholar] [CrossRef]
- Ho, M.H. Potentiometric biosensor based on immobilized enzyme membrane and fluoride detection. Sens. Actuators 1988, 15, 445–450. [Google Scholar] [CrossRef]
- Song, M.-J.; Hwang, S.W.; Whang, D. Amperometric hydrogen peroxide biosensor based on a modified gold electrode with silver nanowires. J. Appl. Electrochem. 2010, 40, 2099–2105. [Google Scholar] [CrossRef]
- Tyagi, M.; Tomar, M.; Gupta, V. Enhanced electron transfer properties of NiO thin film for the efficient detection of urea. Mater. Sci. Eng. B 2019, 240, 147–155. [Google Scholar] [CrossRef]
- Tyagi, M.; Tomar, M.; Gupta, V. NiO nanoparticle-based urea biosensor. Biosens. Bioelectron. 2013, 41, 110–115. [Google Scholar] [CrossRef]
- Javar, H.A.; Garkani-Nejad, Z.; Noudeh, G.D.; Mahmoudi-Moghaddam, H. Development of a new electrochemical DNA biosensor based on Eu3+−doped NiO for determination of amsacrine as an anti-cancer drug: Electrochemical, spectroscopic and docking studies. Anal. Chim. Acta 2020, 1133, 48–57. [Google Scholar] [CrossRef]
- Wanekaya, A.K.; Chen, W.; Myung, N.V.; Mulchandani, A. Nanowire-Based Electrochemical Biosensors. Electroanalysis 2006, 18, 533–550. [Google Scholar] [CrossRef]
- Ng, S.P.; Qiu, G.; Ding, N.; Lu, X.; Wu, C.-M.L. Label-free detection of 3-nitro-l-tyrosine with nickel-doped graphene localized surface plasmon resonance biosensor. Biosens. Bioelectron. 2017, 89, 468–476. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, B.-T. Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber. Sens. Actuators B Chem. 2018, 275, 332–338. [Google Scholar] [CrossRef]
- Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; et al. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-S.; Yu, S.H.; Kim, T.H. One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid. Nanomaterials 2017, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Faraj, Y.; Liu, L.-Y.; Wang, W.; Xie, R.; Liu, Z.; Ju, X.-J.; Wei, J.; Chu, L.-Y. Simultaneous determination of dopamine, uric acid and estriol in maternal urine samples based on the synergetic effect of reduced graphene oxide, silver nanowires and silver nanoparticles in their ternary 3D nanocomposite. Microchem. J. 2020, 158, 105185. [Google Scholar] [CrossRef]
- Rowley-Neale, S.J.; Randviir, E.P.; Abo-Dena, A.S.; Banks, C.E. An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl. Mater. Today 2018, 10, 218–226. [Google Scholar] [CrossRef]
- Adinaveen, T.; Karnan, T.; Selvakumar, S.A.S. Photocatalytic and optical properties of NiO added Nephelium lappaceum L. peel extract: An attempt to convert waste to a valuable product. Heliyon 2019, 5, e01751. [Google Scholar] [CrossRef] [Green Version]
- Parsaee, Z. Synthesis of novel amperometric urea-sensor using hybrid synthesized NiO-NPs/GO modified GCE in aqueous solution of cetrimonium bromide. Ultrason. Sonochem. 2018, 44, 120–128. [Google Scholar] [CrossRef]
- Qiao, H.; Wei, Z.; Yang, H.; Zhu, L.; Yan, X. Preparation and Characterization of NiO Nanoparticles by Anodic Arc Plasma Method. J. Nanomater. 2009, 2009, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Drouet, C.; Laberty, C.; Fierro, J.; Alphonse, P.; Rousset, A. X-ray photoelectron spectroscopic study of non-stoichiometric nickel and nickel–copper spinel manganites. Int. J. Inorg. Mater. 2000, 2, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Prietoa, P.; Nistora, V.; Nouneh, K.; Oyama, M.; Lefdild, M.A.; Díaza, R. XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 2012, 258, 8807–8813. [Google Scholar] [CrossRef]
- Patil, R.; Chang, C.-P.; Devan, R.; Liou, Y.; Ma, Y.-R. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide. ACS Appl. Mater. Interfaces 2016, 8, 9872–9880. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-J.; Wang, M.; Zhang, X.-Y.; Wu, J.-Y.; Zhang, T. Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires. Nanoscale Res. Lett. 2014, 9, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Yin, Y.; Mayers, B.T.; Herricks, T.; Xia, Y. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chem. Mater. 2002, 14, 4736–4745. [Google Scholar] [CrossRef]
- Lima, A.; Mendonça, J.; Duarte, M.; Stavale, F.; Legnani, C.; De Carvalho, G.; Maciel, I.; Sato, F.; Fragneaud, B.; Quirino, W. Reduced graphene oxide prepared at low temperature thermal treatment as transparent conductors for organic electronic applications. Org. Electron. 2017, 49, 165–173. [Google Scholar] [CrossRef]
- Zhao, N.; Cheng, X.-N.; Yang, J.; Yang, M.-X.; Zheng, S.-H.; Zhou, Y.-Z. Experimental study on the preparation, characterization and conductivity improvement of reduced graphene-oxide papers. J. Phys. Chem. Solids 2014, 75, 1141–1146. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Mross, S.; Furst, P.; Pierrat, S.; Zimmermann, T.; Vogt, H.; Kraft, M. Enzyme Sensor With Polydimethylsiloxane Membrane and CMOS Potentiostat for Wide-Range Glucose Measurements. IEEE Sens. J. 2015, 15, 7096–7104. [Google Scholar] [CrossRef]
- Mizutani, F.; Yabuki, S.; Sawaguchi, T.; Hirata, Y.; Sato, Y.; Iijima, S. Use of a siloxane polymer for the preparation of amperometric sensors: O2 and NO sensors and enzyme sensors. Sens. Actuators B Chem. 2001, 76, 489–493. [Google Scholar] [CrossRef]
- Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep. 2016, 5, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Yue, R.; Ren, F.; Yao, Z.; Jiang, F.; Yang, P.; Du, Y. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2014, 53, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Du, J.; Wang, H.; Zou, C.; Jiang, F.; Yang, P.; Du, Y. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem. 2014, 204, 302–309. [Google Scholar] [CrossRef]
- Hoo, C.M.; Starostin, N.; West, P.; Mecartney, M.L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanoparticle Res. 2008, 10, 89–96. [Google Scholar] [CrossRef]
- da Cruz, F.S.; Paula, F.D.S.; Franco, D.; dos Santos, W.T.P.; Ferreira, L.F. Electrochemical detection of uric acid using graphite screen-printed electrodes modified with Prussian blue/poly(4-aminosalicylic acid)/Uricase. J. Electroanal. Chem. 2017, 806, 172–179. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.-X. Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. Chemosphere 2021, 281, 130762. [Google Scholar] [CrossRef]
- De Mori, A.; Jones, R.S.; Cretella, M.; Cerri, G.; Draheim, R.R.; Barbu, E.; Tozzi, G.; Roldo, M. Evaluation of Antibacterial and Cytotoxicity Properties of Silver Nanowires and Their Composites with Carbon Nanotubes for Biomedical Applications. Int. J. Mol. Sci. 2020, 21, 2303. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-M.; Wang, Y.-S.; Hsiao, S.-T.; Liao, W.-H.; Lin, C.-W.; Yang, S.-Y.; Tien, H.-W.; Ma, C.-C.M.; Hu, C.-C. Fabrication of a silver nanowire-reduced graphene oxide-based electrochemical biosensor and its enhanced sensitivity in the simultaneous determination of ascorbic acid, dopamine, and uric acid. J. Mater. Chem. C 2015, 3, 9444–9453. [Google Scholar] [CrossRef]
- Gomes, S.; Numata, K.; Leonor, I.B.; Mano, J.F.; Reis, R.L.; Kaplan, D.L. AFM Study of Morphology and Mechanical Properties of a Chimeric Spider Silk and Bone Sialoprotein Protein for Bone Regeneration. Biomacromolecules 2011, 12, 1675–1685. [Google Scholar] [CrossRef] [Green Version]
- Nakazawa, H.; Otake, R.; Futagawa, M.; Dasai, F.; Ishida, M.; Sawada, K. High-Sensitivity Charge-Transfer-Type pH Sensor With Quasi-Signal Removal Structure. IEEE Trans. Electron Devices 2013, 61, 136–140. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Honeychurch, K. Printed Thick-Film Biosensors; Woodhead Publishing: Sawston, UK, 2012; pp. 366–409. [Google Scholar] [CrossRef]
- Kudo, H.; Takagi, T. Electrochemical Biosensor for Simplified Determination of Salivary Uric Acid. Sens. Mater. 2018, 1187–1195. [Google Scholar] [CrossRef]
- Aly, M.; Tork, S.; Al-Garni, S.; Allam, R. Production and characterization of uricase from Streptomyces exfoliatus UR10 isolated from farm wastes. Turk. J. Biol. 2013, 37, 520–529. [Google Scholar] [CrossRef]
- Arslan, F. An Amperometric Biosensor for Uric Acid Determination Prepared from Uricase Immobilized in Polyaniline-Polypyrrole Film. Sensors 2008, 8, 5492–5500. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Sun, H.; Hussain, M.; Karim, S.; Nisar, A.; Khan, M. Development of Silver Nanowires Based Highly Sensitive Amperometric Glucose Biosensor. Electroanalysis 2015, 27, 1498–1506. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Rodrigues, R.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.T.R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.-Y.; Chen, Y.-Y. A Novel Low Unity-Gain Frequency and Low Power Consumption Instrumentation Amplifier Design for RuO₂ Uric Acid Biosensor Measurement. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Chou, J.-C.; Lai, T.-Y.; Lin, S.-H.; Kuo, P.-Y.; Lai, C.-H.; Nien, Y.-H.; Su, T.-Y. Characteristics and Stability of a Flexible Arrayed Uric Acid Biosensor Based on NiO Film Modified by Graphene and Magnetic Beads. IEEE Sens. J. 2020, 21, 7218–7225. [Google Scholar] [CrossRef]
- Jindal, K.; Tomar, M.; Gupta, V. A novel low-powered uric acid biosensor based on arrayed p-n junction heterostructures of ZnO thin film and CuO microclusters. Sens. Actuators B Chem. 2017, 253, 566–575. [Google Scholar] [CrossRef]
- Mohammed, O.A.M.A.; Saleh, K.A.; Al-Shammaree, S.A.W. Fabrication and evaluation of uric acid biosensor using nano-composites. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Verma, S.; Choudhary, J.; Singh, K.P.; Chandra, P.; Singh, S.P. Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int. J. Biol. Macromol. 2019, 130, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, S.; Cairone, F.; Amenta, A.; Bucolo, M. A Real Time Feed Forward Control of Slug Flow in Microchannels †. Energies 2019, 12, 2556. [Google Scholar] [CrossRef] [Green Version]
Films | Roughness | |
---|---|---|
Ra (nm) | Rq (nm) | |
rGO/NiO | 33.6 | 44.8 |
AgNWs/rGO/NiO | 203.0 | 234.0 |
Temperature (°C) | Average Sensitivity mV/(mg/L) | Linearity |
---|---|---|
25 | 4.71 | 0.959 |
35 | 5.43 | 0.964 |
45 | 5.90 | 0.985 |
55 | 4.53 | 0.978 |
65 | 3.71 | 0.901 |
Number | Average Sensitivity mV/(mg/L) |
---|---|
1 | 4.76 |
2 | 4.71 |
3 | 4.60 |
4 | 4.73 |
5 | 4.61 |
6 | 4.66 |
7 | 4.71 |
8 | 4.65 |
9 | 4.68 |
10 | 4.70 |
11 | 4.73 |
12 | 4.69 |
Day | Average Sensitivity mV/(mg/L) | Relative Average Sensitivity (%) |
---|---|---|
1 | 4.71 | 100.00 |
4 | 4.67 | 99.15 |
7 | 4.31 | 91.51 |
10 | 4.02 | 85.35 |
13 | 3.83 | 81.32 |
16 | 3.60 | 76.43 |
19 | 2.77 | 58.81 |
21 | 2.20 | 46.70 |
Sensing Film | Linear Range | Average Sensitivity | Type | Lifetime (days) | LOD (mg/L) | Reference |
---|---|---|---|---|---|---|
RuO2 | 0.1–0.5 mM (20–100 mg/L) | 0.715 mV/(mg/L) | Potentiometric | N/A | N/A | [49] 2021 |
MBs–uricase/rGO/NiO | 0.1–0.5 mM (20–100 mg/L) | 3.828 mV/(mg/L) | 15 | 0.574 | [50] 2021 | |
Uricase/CuO/ZnO arrayed p–n junction heterostructure | 0.05–1.00 mM (9–180 mg/L) | 174.000 (μA mM−1 cm−2) | Amperometric | ~5 months | 0.980 | [51] 2017 |
Uricase/Au-rGO/ITO | 50–800 μM (0.18–1440 mg/L) | 86.62 ± 0.19 (μM mM−1) | ~6 months | 1.130 | [52] 2019 | |
Uricase/Fe3O4/rGO/Ag /ITO | 10–800 μM (0.18–1440 mg/L) | 0.076 (μA mM−1 cm−2) | N/A | 0.932 | [53] 2021 | |
AgNW–uricase/rGO/NiO | 0.1–0.5 Mm (20–100 mg/L) | 4.660 mV/(mg/L) | Potentiometric | 8 | 0.680 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, J.-C.; Lai, T.-Y.; Nien, Y.-H.; Lai, C.-H.; Kuo, P.-Y.; Lin, S.-H.; Huang, Y.-H.; Lee, K.-T. Fabrication of a Sensitive and Stable NiO Uric Acid Biosensor Using Ag Nanowires and Reduced Graphene Oxide. Energies 2021, 14, 4696. https://doi.org/10.3390/en14154696
Chou J-C, Lai T-Y, Nien Y-H, Lai C-H, Kuo P-Y, Lin S-H, Huang Y-H, Lee K-T. Fabrication of a Sensitive and Stable NiO Uric Acid Biosensor Using Ag Nanowires and Reduced Graphene Oxide. Energies. 2021; 14(15):4696. https://doi.org/10.3390/en14154696
Chicago/Turabian StyleChou, Jung-Chuan, Tsu-Yang Lai, Yu-Hsun Nien, Chih-Hsien Lai, Po-Yu Kuo, Si-Hong Lin, Yu-Hao Huang, and Kun-Tse Lee. 2021. "Fabrication of a Sensitive and Stable NiO Uric Acid Biosensor Using Ag Nanowires and Reduced Graphene Oxide" Energies 14, no. 15: 4696. https://doi.org/10.3390/en14154696
APA StyleChou, J. -C., Lai, T. -Y., Nien, Y. -H., Lai, C. -H., Kuo, P. -Y., Lin, S. -H., Huang, Y. -H., & Lee, K. -T. (2021). Fabrication of a Sensitive and Stable NiO Uric Acid Biosensor Using Ag Nanowires and Reduced Graphene Oxide. Energies, 14(15), 4696. https://doi.org/10.3390/en14154696