Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching PM Generator
Abstract
:1. Introduction
2. Topology and Initial Design of FSPM Generator
3. Optimization method
3.1. Parameter Model
3.2. Stepwise Optimization Method
- Step1: Split ratio optimization.
- Step2: Permanent magnet size optimization.
- Step3: Stator slot size optimization.
- Step4: Rotor slot size optimization.
3.3. Global Optimization Method
3.4. Comparison of Optimization Results
4. Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Polinder, H.; Ferreira, J.A.; Jensen, B.B.; Abrahamsen, A.B.; Atallah, K.; McMahon, R.A. Trends in wind turbine generator systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 174–185. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, M.; Hua, W.; Wang, W. A novel maximum power point tracking control for permanent magnet direct drive wind energy conversion systems. Energies 2012, 5, 1398–1412. [Google Scholar] [CrossRef]
- Bhowmik, S.; Spee, R.; Enslin, J.H.R. Performance optimization for doubly fed wind power generation systems. IEEE Trans. Ind. Appl. 1999, 35, 949–958. [Google Scholar] [CrossRef]
- Liserre, M.; Cárdenas, R.; Molinas, M.; Rodriguez, J. Overview of multi-MW wind turbines and wind parks. IEEE Trans. Ind. Electron. 2011, 58, 1081–1095. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Z.; Cai, Y.; Lei, G.; Guo, Y.; Zhu, J. Driving-Cycle-Oriented Design Optimization of a Permanent Magnet Hub Motor Drive System for a Four-Wheel-Drive Electric Vehicle. IEEE Trans. Transp. Electrif. 2020, 6, 1115–1125. [Google Scholar] [CrossRef]
- Abolhassani, M.T. A novel multiphase fault tolerant high torque density permanent magnet motor drive for traction application. IEEE Int. Conf. Electr. Mach. Drives 2005, 2005, 728–734. [Google Scholar]
- Sun, H.Y.; Wang, K. Effect of third harmonic flux density on cogging torque in surface-mounted permanent magnet machines. IEEE Trans. Ind. Electron. 2018, 66, 6150–6158. [Google Scholar] [CrossRef]
- Wang, K.; Gu, Z.Y.; Zhu, Z.Q.; Wu, Z.Z. Optimum injected harmonics into magnet shape in multiphase surface-mounted PM machine for maximum output torque. IEEE Trans. Ind. Electron. 2017, 64, 4434–4443. [Google Scholar] [CrossRef]
- Ojeda, J.; Simoes, M.G.; Li, G.; Gabsi, M. Design of a flux-switching electrical generator for wind turbine systems. IEEE Trans. Ind. Appl. 2012, 48, 1808–1816. [Google Scholar] [CrossRef]
- Hua, W.; Cheng, M.; Zhu, Z.Q.; Howe, D. Design of flux-switching permanent magnet machine considering the limitation of inverter and flux-weakening capability. In Proceedings of the Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, 8–12 October 2006. [Google Scholar]
- Zhao, J.; Yan, Y.; Li, B.; Liu, X.; Chen, Z. Influence of different rotor teeth shapes on the performance of flux switching permanent magnet machines used for electric vehicles. Energies 2014, 7, 8056–8075. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Hua, W.; Cheng, M. Steady-state characteristics analysis of hybrid-excited flux-switching machines with identical iron laminations. Energies 2015, 8, 12898–12916. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Hua, W.; Zhang, Z. High-frequency core loss analysis of high-speed flux-switching permanent magnet machines. Electronics 2021, 10, 1076. [Google Scholar] [CrossRef]
- Thomas, A.S.; Zhu, Z.Q.; Owen, R.L.; Jewell, G.W.; Howe, D. Multiphase flux-switching permanent-magnet brushless machine for aerospace application. IEEE Trans. Ind. Appl. 2009, 45, 1971–1981. [Google Scholar] [CrossRef]
- Wei, H.; Zhou, L.K. Investigation of a co-axial dual-mechanical ports flux-switching permanent magnet machine for hybrid electric vehicles. Energies 2015, 8, 14361–14379. [Google Scholar]
- Chen, J.T.; Zhu, Z.Q. Influence of the rotor pole number on optimal parameters in flux-switching PM brushless AC machines by the lumped-parameter magnetic circuit model. IEEE Trans. Ind. Appl. 2010, 46, 1381–1388. [Google Scholar] [CrossRef]
- Chen, J.T.; Zhu, Z.Q.; Howe, D. Optimization of multi-tooth flux-switching PM brushless ac machines. In Proceedings of the 2008 18th International Conference on Electrical Machines, Vilamoura, Portugal, 6–9 September 2008. [Google Scholar]
- Sun, X.; Shi, Z.; Zhu, J. Multi-objective design optimization of an IPMSM for EVs based on fuzzy method and sequential Taguchi method. IEEE Trans. Ind. Electron. 2020, 68, 10592–10600. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, D.; Mo, L.; Chen, Y.; Quan, L. Multiobjective optimization design of a double-rotor flux-switching permanent magnet machine considering multimode operation. IEEE Trans. Ind. Electron. 2018, 66, 641–653. [Google Scholar] [CrossRef]
- Li, F.; Hua, W.; Tong, M.; Zhao, G.; Cheng, M. Nine-phase flux-switching permanent magnet brushless machine for low-speed and high-torque applications. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar]
Specification | Value |
---|---|
Power | 17 kW |
Speed | 600 r/min |
Phase voltage | 230 V |
Phase number | 9 |
Stack length | 172 mm |
Stator outer diameter | 327 mm |
Rotor bore diameter | 120 mm |
Air gap length | 1 mm |
Br of PMs | 1.2 T |
Permeability of PM | 1.05 |
Parameters | Description | Value |
---|---|---|
Rso | Stator outer radius | Rso |
Rsi | Stator inner radius | Rso × ksio |
wst | Stator tooth width | Kwst × Rsi × pi/18 |
wsy | Stator yoke width | Kwst × Rsi × pi/18 |
wsl | Stator slot opening width | Rsi × pi /18 (1−2 × Kwst−Kwpm) |
hpm | PM height | Khpm × (Rso-Rsi) |
wpm | PM width | Kwpm × Rsi × pi/18 |
wsl | Stator slot width | Rsi × pi/18−2 × wst−wpm |
wrt | Rotor teeth tip width | Kwrt (Rsi−1 mm) × pi/18 |
wrty | Rotor teeth root width | krty × wrt |
hrt | PM height | khrt × wrt |
Variable | Description | Range |
---|---|---|
ksio | split ratio | (0.55, 0.85) |
Khpm | Height coefficient of PM | (0.65, 1.0) |
Kwst | Stator tooth width coefficient | (0.23, 0.30) |
Kwrt | Rotor tooth width coefficient | (0.2, 0.3) |
Kwpm | Width coefficient of PM | 0.25 |
krty | wrty/wrt | 2.0 |
khrt | hrt/wrt | 1.5 |
Variable | Initial | Stepwise Optimization | Global Optimization |
---|---|---|---|
ksio | 0.8 | 0.72 | 0.70 |
Khpm | 0.92 | 0.85 | 0.76 |
Kwst | 0.25 | 0.24 | 0.24 |
Kwrt | 0.25 | 0.27 | 0.29 |
T | 217 | 283 | 273 |
T/Vpm | 2.4 | 2.65 | 2.75 |
Efi | 0.945 | 0.965 | 0.979 |
Torque ripple (%) | 2.45 | 2.22 | 2.24 |
PM Weight (kg) | 2.13 | 2.49 | 2.34 |
Variable | Initial | Stepwise Optimization | Global Optimization |
---|---|---|---|
PM loss (W) | 185 | 162 | 103 |
Stator core loss (W) | 231 | 192 | 110 |
Rotor core loss (W) | 89 | 82 | 65 |
Copper loss (W) | 273 | 305 | 282 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhu, X. Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching PM Generator. Energies 2021, 14, 4754. https://doi.org/10.3390/en14164754
Li F, Zhu X. Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching PM Generator. Energies. 2021; 14(16):4754. https://doi.org/10.3390/en14164754
Chicago/Turabian StyleLi, Feng, and Xiaoyong Zhu. 2021. "Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching PM Generator" Energies 14, no. 16: 4754. https://doi.org/10.3390/en14164754
APA StyleLi, F., & Zhu, X. (2021). Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching PM Generator. Energies, 14(16), 4754. https://doi.org/10.3390/en14164754