M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments
Abstract
:1. Introduction
- We are among the first to provide a deep-learning method to up-sample monthly energy consumption measures into hourly resolution.
- A network architecture for energy SRP is provided, which results in a reconstruction ratio of 1:744 (month to hour).
- The paper also proposes an additional network layer that keeps the total predicted value matched with the original monthly value during training and inference.
- We provide a description and feature engineering approach for fitting into a wide resolution range of ratio reconstruction.
- We present a comparison with standard interpolation methods to show the superiority of the proposal.
Related Work
2. Preliminary
2.1. Motivation
2.2. Formulation of Super Resolution Perception Problem
- where and are the down-sampling matrices over S for L and H respectively.
- where and are the resolution scales of L and H respectively, and .
- where and are an additive down-sampling noise of L and H respectively.
2.3. Problem Description
2.4. Convolutional Neural Networks
2.5. Up-Sampling of Temporal Resolution Features
- The second temporal dimension by applying stacked transposed convolutions, which are sometimes also referred to as deconvolutional layers.
- The last dimension of the input volume, which corresponds to the channels or energy features.
2.6. SMARKIA SRP Dataset
3. Methodology
3.1. Data Preprocessing
3.2. Features Engineering
3.2.1. Temporal Features
3.2.2. Consumption Features
3.3. Network Architecture
Network Outputscaler Layer
3.4. Evaluation and Metrics
4. Experiments and Results
5. Conclusions
Future Investigations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duchon, C.E. Lanczos Filtering in One and Two Dimensions. J. Appl. Meteorol. 1979, 18, 1016–1022. [Google Scholar] [CrossRef]
- Liu, G.; Gu, J.; Zhao, J.; Wen, F.; Liang, G. Super Resolution Perception for Smart Meter Data. Inf. Sci. 2020, 526, 263–273. [Google Scholar] [CrossRef]
- Allebach, J.; Wong, P.W. Edge-directed interpolation. In Proceedings of the 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 19 September 1996; Volume 3, pp. 707–710. [Google Scholar] [CrossRef]
- Li, X.; Orchard, M.T. New edge-directed interpolation. IEEE Trans. Image Process. 2001, 10, 1521–1527. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image super-resolution as sparse representation of raw image patches. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image Super-Resolution Via Sparse Representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Zhang, L.; Shi, G.; Wu, X. Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization. IEEE Trans. Image Process. 2011, 20, 1838–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeyde, R.; Elad, M.; Protter, M. On Single Image Scale-Up Using Sparse-Representations. In Curves and Surfaces; Boissonnat, J.D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.L., Schumaker, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 711–730. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, D.; Yang, J.; Han, W.; Huang, T. Deep Networks for Image Super-Resolution with Sparse Prior. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 370–378. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Liu, G.; Zhao, J.; Liu, Y.; Gu, J.; Sun, G.; Dong, Z. Super Resolution Perception for Improving Data Completeness in Smart Grid State Estimation. Engineering 2020, 6, 789–800. [Google Scholar] [CrossRef]
- Li, F.; Lin, D.; Yu, T. Improved Generative Adversarial Network-Based Super Resolution Reconstruction for Low-Frequency Measurement of Smart Grid. IEEE Access 2020, 8, 85257–85270. [Google Scholar] [CrossRef]
- Kukunuri, R.; Batra, N.; Wang, H. An Open Problem: Energy Data Super-Resolution. In Proceedings of the NILM’20, 5th International Workshop on Non-Intrusive Load Monitoring, Virtual Event, Japan, 18 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 99–102. [Google Scholar] [CrossRef]
- Lu, J.; Jin, B. Super-Resolution Reconstruction of Interval Energy Data. In Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Virtual Event, Japan, 18–20 November 2020; pp. 306–307. [Google Scholar]
- Liu, W.; Ren, C.; Xu, Y. PV Generation Forecasting With Missing Input Data: A Super-Resolution Perception Approach. IEEE Trans. Sustain. Energy 2020, 12, 1493–1496. [Google Scholar] [CrossRef]
- Zhang, C.; Shao, Z.; Chen, F. A Power Data Reconstruction Method Based on Super-Resolution Generative Adversarial Network. In Proceedings of the 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 8–11 April 2021; pp. 300–304. [Google Scholar] [CrossRef]
- Zhang, C.; Shao, Z.; Jiang, C.; Chen, F. A PV generation data reconstruction method based on improved super-resolution generative adversarial network. Int. J. Electr. Power Energy Syst. 2021, 132, 107129. [Google Scholar] [CrossRef]
- Ren, C.; Xu, Y.; Zhao, J.; Zhang, R.; Wan, T. A super-resolution perception-based incremental learning approach for power system voltage stability assessment with missing PMU measurements. CSEE J. Power Energy Syst. 2021. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Huang, S.; Zhang, X.; Liu, X. Temporal Graph Super Resolution on Power Distribution Network Measurements. IEEE Access 2021, 9, 70628–70638. [Google Scholar] [CrossRef]
- Pozna, C.; Precup, R.E. Applications of signatures to expert systems modelling. Acta Polytech. Hung. 2014, 11, 21–39. [Google Scholar]
- Zall, R.; Kangavari, M.R. On the construction of multi-relational classifier based on canonical correlation analysis. Int. J. Artif. Intell. 2019, 17, 23–43. [Google Scholar]
- Hedrea, E.L.; Precup, R.E.; Roman, R.C.; Petriu, E.M. Tensor product-based model transformation approach to tower crane systems modeling. Asian J. Control 2021. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Brickman, S.; Dengg, A.; Fasth, N.; Mihajlovic, M.; Norman, J. A machine learning approach to classify pedestrians’ events based on IMU and GPS. Int. J. Artif. Intell. 2019, 17, 154–167. [Google Scholar]
- Precup, R.E.; Teban, T.A.; Albu, A.; Borlea, A.B.; Zamfirache, I.A.; Petriu, E.M. Evolving fuzzy models for prosthetic hand myoelectric-based control. IEEE Trans. Instrum. Meas. 2020, 69, 4625–4636. [Google Scholar] [CrossRef]
- Yuhana, U.; Fanani, N.Z.; Yuniarno, E.M.; Rochimah, S.; Koczy, L.T.; Purnomo, M.H. Combining fuzzy signature and rough sets approach for predicting the minimum passing level of competency achievement. Int. J. Artif. Intell. 2020, 18, 237–249. [Google Scholar]
- Hart, G.W. Nonintrusive appliance load monitoring. Proc. IEEE 1992, 80, 1870–1891. [Google Scholar] [CrossRef]
- van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Bach, F., Blei, D., Eds.; Volume 37, pp. 448–456. [Google Scholar] [CrossRef]
- Douglas, S.C.; Yu, J. Why RELU Units Sometimes Die: Analysis of Single-Unit Error Backpropagation in Neural Networks. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 864–868. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
Train Set | Test Set | |
---|---|---|
Households count | 31,910 (70.4%) | 13,431 (29.6%) |
Resolution | Hourly | Hourly |
Total measurements | 570,032,568 | 239,823,936 |
Mean | 0.0636 | 0.0730 |
Std | 0.1016 | 0.1074 |
Median | 0.0674 | 0.0342 |
Min | 0.0000 | 0.0000 |
25% | 0.0101 | 0.0125 |
50% | 0.0300 | 0.0342 |
75% | 0.0713 | 0.0855 |
Max | 1.0000 | 1.0000 |
Missing values | 0.0739% | 0.0126% |
Method | MAE | MedAE | NRMSE | R⌃2 |
---|---|---|---|---|
Nearest | 0.048958 | 0.025787 | 0.085734 | 0.362743 |
Lineal | 0.048893 | 0.026114 | 0.085347 | 0.368475 |
Cubic | 0.048825 | 0.025806 | 0.085319 | 0.368897 |
M-SRPCNN | 0.046235 | 0.021808 | 0.084470 | 0.381399 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de-Paz-Centeno, I.; García-Ordás, M.T.; García-Olalla, O.; Arenas, J.; Alaiz-Moretón, H. M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments. Energies 2021, 14, 4765. https://doi.org/10.3390/en14164765
de-Paz-Centeno I, García-Ordás MT, García-Olalla O, Arenas J, Alaiz-Moretón H. M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments. Energies. 2021; 14(16):4765. https://doi.org/10.3390/en14164765
Chicago/Turabian Stylede-Paz-Centeno, Iván, María Teresa García-Ordás, Oscar García-Olalla, Javier Arenas, and Héctor Alaiz-Moretón. 2021. "M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments" Energies 14, no. 16: 4765. https://doi.org/10.3390/en14164765
APA Stylede-Paz-Centeno, I., García-Ordás, M. T., García-Olalla, O., Arenas, J., & Alaiz-Moretón, H. (2021). M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments. Energies, 14(16), 4765. https://doi.org/10.3390/en14164765