Necessity Analysis of Bypass Diode for AC Module under Partial Shading Condition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Operational States of Shadowed Solar Cell and Relevant Bypass Diode
3.2. The Role of the Bypass Diode in an AC Module
3.3. Temperature Change of PV Module at Different LMPPs
3.4. The Worst Shading Ratio
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Isc | Short circuit current |
Iout | Output current of PV module |
Issc | The current of the shadowed solar cell |
Ibd | The current of bypass diode |
Voc | Open circuit voltage |
Vout | The output current of PV module |
Vssc | The voltage of the shadowed solar cell |
Vbd | The voltage of bypass diode |
Pout | The output power of PV module |
MPP | Maximum Power Point |
MPPT | Maximum Power Point Tracking |
LMPP | Local Maximum Power Point |
GMPP | Global Maximum Power Point |
Abs | Absolute value |
BIPV | Building-integrated photovoltaics |
WOD | Without bypass diode |
MPP-WOD | Maximum power point of PV module without bypass diode |
MOSFET | metal-oxide-semiconductor field-effect transisitor |
CBS | cool bypass switch |
References
- Yasushi, O.; Sanshiro, Y.; Daisuke, I. An investigation into hot-spot in PV module. Proc. Jpn. Sol. Energy 2010, 535–538. [Google Scholar]
- Fialho, L.; Melicio, R.; Mendes, V.M.F.; Figueiredo, J.; Collares-Pereira, M. Effect of Shading on Series Solar Modules: Simulation and Experimental Results. Procedia Technol. 2014, 17, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, W.; Wiesner, W.; Vaassen, W. Hot spot investigations on PV modules-new concepts for a test standard and consequences for module design with respect to bypass diodes. In Proceedings of the Photovoltaic Specialists Conference, Anaheim, CA, USA, 29 September–3 October 1997; pp. 1129–1132. [Google Scholar]
- Simon, M.; Meyer, E.L. Detection and analysis of hot-spot formation in solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 106–113. [Google Scholar] [CrossRef]
- Solheim, H.J.; Fjær, H.G.; Sørheim, E.A.; Foss, S.E. Measurement and Simulation of Hot Spots in Solar Cells. Energy Procedia 2013, 38, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Bauwens, P.; Doutreloigne, J. NMOS-Based Integrated Modular Bypass for Use in Solar Systems (NIMBUS): Intelligent Bypass for Reducing Partial Shading Power Loss in Solar Panel Applications. Energies 2016, 9, 450. [Google Scholar] [CrossRef]
- Acciari, G.; Graci, D.; La Scala, A. Higher PV Module Efficiency by a Novel CBS Bypass. IEEE Trans. Power Electron. 2011, 26, 1333–1336. [Google Scholar] [CrossRef]
- Daliento, S.; Di Napoli, F.; Guerriero, P.; d’Alessandro, V. A modified bypass circuit for improved hot spot reliability of solar panels subject to partial shading. Sol. Energy 2016, 134, 211–218. [Google Scholar] [CrossRef]
- Guerriero, P.; Tricoli, P.; Daliento, S. A bypass circuit for avoiding the hot spot in PV modules. Sol. Energy 2019, 181, 430–438. [Google Scholar] [CrossRef]
- Pandian, A.; Bansal, K.; Thiruvadigal, D.J.; Sakthivel, S. Fire Hazards and Overheating Caused by Shading Faults on Photo Voltaic Solar Panel. Fire Technol. 2015, 52, 349–364. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, Y.; Wen, J.X.; Zhou, F.; Ye, X. A Review for Solar Panel Fire Accident Prevention in Large-Scale PV Applications. IEEE Access 2020, 8, 132466–132480. [Google Scholar] [CrossRef]
- Dunselman, C.P.M. Feasibility and developmen of PV modules with Integrated Inverter: AC modules. In Proceedings of the Twelfth European Photovoltaic Solar Energy Conference: Proceedings of the International Conference, Amsterdam, The Netherlands, 11–15 April 1994; pp. 313–415. [Google Scholar]
- De Graaf, L.E.; van de Weiden, T.C.J. Characteristics and performance of a pv-system consisting of 20 ac-modules. In Proceedings of the World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 5–9 December 1994. [Google Scholar]
- Oldenkamp, H.; Jong, I.J.d. AC modules_ past, present and future. In Proceedings of the Workshop Installing the Solar Solution, Hatfield, UK, 22–23 January 1998. [Google Scholar]
- Hoffner, J.E.; Palani, M.M.; Russell, M.C. A PV window awning system on the University of Texas Houston Health Science Center using AC-modules. In Proceedings of the Twenty-Eighth IEEE Photovoltaic Specialists Conference—2000 (Cat. No.00CH37036), Anchorage, AK, USA, 15–22 September 2000; pp. 1545–1547. [Google Scholar]
- Kawamura, H.; Naka, K.; Yonekura, N.; Yamanaka, S.; Kawamura, H.; Ohno, H.; Naito, K. Simulation of I–V characteristics of a PV module with shaded PV cells. Sol. Energy Mater. Sol. Cells 2003, 75, 613–621. [Google Scholar] [CrossRef]
- Silvestre, S.; Chouder, A. Effects of shadowing on photovoltaic module performance. Prog. Photovolt. Res. Appl. 2008, 16, 141–149. [Google Scholar] [CrossRef]
- Patel, H.; Agarwal, V. MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics. IEEE Trans. Energy Convers. 2008, 23, 302–310. [Google Scholar] [CrossRef]
- Gallardo-Saavedra, S.; Karlsson, B. Simulation, validation and analysis of shading effects on a PV system. Sol. Energy 2018, 170, 828–839. [Google Scholar] [CrossRef]
- Mahto, R.V.; Sharma, D.K.; Xavier, D.X.; Raghavan, R.N. Improving performance of photovoltaic panel by reconfigurability in partial shading condition. J. Photonics Energy 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Pendem, S.R.; Mikkili, S. Modeling, simulation and performance analysis of solar PV array configurations (Series, Series–Parallel and Honey-Comb) to extract maximum power under Partial Shading Conditions. Energy Rep. 2018, 4, 274–287. [Google Scholar] [CrossRef]
- Pendem, S.R.; Mikkili, S. Modelling and performance assessment of PV array topologies under partial shading conditions to mitigate the mismatching power losses. Sol. Energy 2018, 160, 303–321. [Google Scholar] [CrossRef]
- Bana, S.; Saini, R.P. Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios. Energy 2017, 127, 438–453. [Google Scholar] [CrossRef]
- Zheng, H.; Li, S.; Challoo, R.; Proano, J. Shading and bypass diode impacts to energy extraction of PV arrays under different converter configurations. Renew. Energy 2014, 68, 58–66. [Google Scholar] [CrossRef]
- Diaz-Dorado, E.; Suárez-García, A.; Carrillo, C.; Cidras, J. Influence of the shadows in photovoltaic systems with different configurations of bypass diodes. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Pisa, Italy, 14–16 June 2010. [Google Scholar]
- Díaz-Dorado, E.; Cidrás, J.; Carrillo, C. Discretized model for partially shaded PV arrays composed of PV panels with overlapping bypass diodes. Sol. Energy 2017, 157, 103–115. [Google Scholar] [CrossRef]
- Gao, C.; Liang, P.; Ren, H.; Han, P. Experimental research on the relationship between bypass diode configuration of photovoltaic module and hot spot generation. J. Semicond. 2018, 39, 1–6. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z. A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Sol. Energy 2011, 85, 2217–2227. [Google Scholar] [CrossRef]
- Trzmiel, G.; Gluchy, D.; Kurz, D. The impact of shading on the exploitation of photovoltaic installations. Renew. Energy 2020, 153, 480–498. [Google Scholar] [CrossRef]
- Alonsogarcia, M.; Ruiz, J.; Chenlo, F. Experimental study of mismatch and shading effects in the—Characteristic of a photovoltaic module. Sol. Energy Mater. Sol. Cells 2006, 90, 329–340. [Google Scholar] [CrossRef]
- Moretón, R.; Lorenzo, E.; Narvarte, L. Experimental observations on hot-spots and derived acceptance/rejection criteria. Sol. Energy 2015, 118, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, J.; Wang, L.; Liu, F.; Jia, P.; Dai, L.; Lu, Y.; Bian, T. The analysis on simulation and invalidation of hot-spot temperature distribution in micro-defective crystalline silicon solar cells. Renew. Energy 2020, 147, 2218–2228. [Google Scholar] [CrossRef]
Parameters | Isc (A) | Voc (V) | Impp (I) | Vmpp (V) | Pmax (W) |
---|---|---|---|---|---|
Value | 7.41 | 36.6 | 6.83 | 30.4 | 207.6 |
Parameters | Isc (A) | Voc (V) | Impp (I) | Vmpp (V) | Pmax (W) |
---|---|---|---|---|---|
Value | 7.41 | 36.6 | 6.83 | 30.4 | 207.6 |
Operating Point | Module | Shadowed Solar Cell (20%) | ||||
---|---|---|---|---|---|---|
Iout (A) | Vout (V) | Pout (W) | Issc (A) | Vssc (V) | Pssc (W) | |
Peak 1 | 6.78 | 20 | 135.69 | 5.87 | −10.79 | −63.34 |
Peak 2 | 5.81 | 32.8 | 190.66 | 5.81 | 0.42 | 2.44 |
MPP-WOD | 5.81 | 32.8 | 190.66 | 5.81 | 0.42 | 2.44 |
Operating Point | Module | Shadowed Solar Cell (90%) | ||||
---|---|---|---|---|---|---|
Iout (A) | Vout (V) | Pout (W) | Issc (A) | Vssc (V) | Pssc (W) | |
Peak 1 | 6.74 | 19.6 | 132.17 | 0.73 | −12.40 | −9.05 |
Peak 2 | 0.73 | 36.0 | 26.35 | 0.73 | 0.29 | 0.21 |
MPP-WOD | 0.73 | 36.0 | 26.35 | 0.73 | 0.29 | 0.21 |
Operating Point | Iout (A) | Vout (V) | Pout (W) | Vbd (V) | Vssc (V) |
---|---|---|---|---|---|
Peak1 | 7.92 | 17.35 | 137.48 | 0.268 | −9.35 |
Peak2 | 6.44 | 28.78 | 185.38 | −9.66 | 0.389 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Han, P. Necessity Analysis of Bypass Diode for AC Module under Partial Shading Condition. Energies 2021, 14, 4778. https://doi.org/10.3390/en14164778
Ren H, Han P. Necessity Analysis of Bypass Diode for AC Module under Partial Shading Condition. Energies. 2021; 14(16):4778. https://doi.org/10.3390/en14164778
Chicago/Turabian StyleRen, Huixue, and Peide Han. 2021. "Necessity Analysis of Bypass Diode for AC Module under Partial Shading Condition" Energies 14, no. 16: 4778. https://doi.org/10.3390/en14164778
APA StyleRen, H., & Han, P. (2021). Necessity Analysis of Bypass Diode for AC Module under Partial Shading Condition. Energies, 14(16), 4778. https://doi.org/10.3390/en14164778