A Study of the Impact of Methanol, Ethanol and the Miller Cycle on a Gasoline Engine
Abstract
:1. Introduction
- Carbon dioxide (CO2), currently the most abundant greenhouse gas (GHG), largely due to fossil fuel combustion and as such is a significant global warming contributor [1].
- Nitrogen oxides (NOx), a large indirect contributor to smog production and acid deposition. The US EPA reported a 51% output reduction from 1990 to 2014 [3].
- Carbon monoxide (CO), which causes an indirect increase in methane within the atmosphere, a prevalent GHG [4].
- Hydrocarbons (HC), such as methane, although emitted significantly less than CO2 it is a potent GHG that warms the atmosphere 84 times more strongly than CO2 over a period of 20 years [5].
2. Theory and Method
2.1. Miller Cycle Theory
2.2. Renewable Biofuel Theory
2.3. Model Creation Method
2.4. Emission Model Application
2.5. Modified Fuel Application
2.6. Miller Cycle Application
2.7. Engine Model Performance Validation
2.8. Emission Model Validation
3. Results and Discussion
3.1. Methanol Blends
3.1.1. Engine Performance
3.1.2. Emissions
3.2. Ethanol Blends
3.2.1. Engine Performance
3.2.2. Emissions
3.3. Biofuel and Gasoline 100% Fraction Comparison
3.4. Early Intake Valve Close
3.4.1. Engine Performance
3.4.2. Emissions
3.5. Late Intake Valve Close
3.5.1. Engine Performance
3.5.2. Emissions
3.6. Turbocharger Variation
3.7. Miller Cycle Comparison
3.8. Combined Technologies
3.8.1. Combination 1—E5, 30 Deg EIVC and 50% Turbo
3.8.2. Combination 2—M30, 30 Deg EIVC and 50% Turbo
3.8.3. Combination 3—E50, 44 Deg EIVC and 50% Turbo
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EIVC | Early Intake Valve Close |
LIVC | Late Intake Valve Close |
NOx | Oxides of Nitrogen |
CO | Carbon Monoxide |
HC | Hydrocarbons |
CO2 | Carbon Dioxide |
GHG | Greenhouse Gas |
VVT | Variable Valve Timing |
TDC | Top Dead Centre |
BDC | Bottom Dead Center |
Deg | Degrees |
PMEP | Pump Mean Effective Pressure |
BSFC | Brake Specific Fuel Consumption |
EFFB | Brake Thermal Efficiency |
CFD | Computational Fluid Dynamics |
SI | Spark Ignition |
DI | Direct Injection |
RPM | Rotations per Minute |
M10 or E10 | Denotes a fuel blend consisting of 10% of methanol/ethanol with 90% gasoline |
(used to describe all blends) |
References
- Kasting, J.F.; Ackerman, T.P. Climatic consequences of very high carbon dioxide levels in the Earth’s early atmosphere. Science 1986, 234, 1383–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations: Conference of the Parties. Paris agreement. In Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris); Retrived December; United Nations: Le Bourget, France, 2015; Volume 4, p. 2017. [Google Scholar]
- Clear Air Technology Center. Nitrogen Oxides (NOx): Why and How They Are Controlled; Diane Publishing: Darby, PA, USA, 1999. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Climate Change 2007: Synthesis Report. In Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- European Comission. An EU Strategy to Reduce Methane Emissions; European Comission: Brussels, Belgium, 2020. [Google Scholar]
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DECC. 2013 UK Greenhouse Gas Emissions, Final Figures; National Statistics Newport: Wales, UK, 2015. [Google Scholar]
- Demirci, O.K.; Uyumaz, A.; Sarıdemir, S.; Çınar, C. Performance and Emission Characteristics of a Miller Cycle Engine. Int. J. Automot. Eng. Technol. 2018, 7, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.M.; Shen, K.; Wang, L.; Chen, W.G.; Pan, J.Y. Experimental study on the effects of the Miller cycle on the performance and emissions of a downsized turbocharged gasoline direct injection engine. Adv. Mech. Eng. 2020, 12. [Google Scholar] [CrossRef]
- Pan, X.; Zhao, Y.; Lou, D.; Fang, L. Study of the Miller Cycle on a Turbocharged DI Gasoline Engine Regarding Fuel Economy Improvement at Part Load. Energies 2020, 13, 1500. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lin, L.; Zeng, S.; Huang, J.; Roskilly, A.P.; He, Y.; Huang, X.; Li, S. Application of the Miller cycle to reduce NOx emissions from petrol engines. Appl. Energy 2008, 85, 463–474. [Google Scholar] [CrossRef]
- Liu, S.; Clemente, E.R.C.; Hu, T.; Wei, Y. Study of spark ignition engine fueled with methanol/gasoline fuel blends. Appl. Therm. Eng. 2007, 27, 1904–1910. [Google Scholar] [CrossRef]
- Wu, T.N.; Chang, C.P.; Wu, T.S.; Shen, Y.H. Emission characteristics of ethanol blending fuels from a laboratory gasoline engine. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bäch SZ, Switzerland, 2013; Volume 253, pp. 2227–2230. [Google Scholar]
- Qi, D.; Liu, S.Q.; Zhang, C.H.; Bian, Y.Z. Properties, performance, and emissions of methanol-gasoline blends in a spark ignition engine. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2005, 219, 405–412. [Google Scholar] [CrossRef]
- Devi, G.K.; Chozhavendhan, S.; Jayamuthunagai, J.; Bharathiraja, B. Conversion of Biomass to Methanol and Ethanol. In Horizons in Bioprocess Engineering; Springer: Cham, Switzerland, 2019; pp. 61–72. [Google Scholar]
- Guan, W.; Wang, X.; Zhao, H.; Liu, H. Exploring the high load potential of diesel–methanol dual-fuel operation with Miller cycle, exhaust gas recirculation, and intake air cooling on a heavy-duty diesel engine. Int. J. Engine Res. 2021, 22, 2318–2336. [Google Scholar] [CrossRef]
- Ricardo. Ricardo’s WAVE Software, Information and Licensing. Available online: https://software.ricardo.com/products/wave (accessed on 1 August 2020).
- Wu, C.; Puzinauskas, P.V.; Tsai, J.S. Performance analysis and optimization of a supercharged Miller cycle Otto engine. Appl. Therm. Eng. 2003, 23, 511–521. [Google Scholar] [CrossRef]
- Stephen Bernard, S. Investigation on Performance, Combustion and Emission Characteristics of a Turbocharged Low Heat Rejection DI Diesel Engine with Extended Expansion Concept; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2009; p. 28. [Google Scholar]
- Efthymiou, P.; Davy, M.; Garner, C.; Hargrave, G.; Rimmer, J.; Richardson, D.; Harris, J. An optical investigation of a cold-start DISI engine startup strategy. In Internal Combustion Engines: Performance, Fuel Economy and Emissions; Elsevier: Amsterdam, The Netherlands, 2013; pp. 33–52. [Google Scholar]
- Iliev, S. A comparison of ethanol and methanol blending with gasoline using a 1-D engine model. Procedia Eng. 2015, 100, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Elfasakhany, A. Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis. Eng. Sci. Technol. Int. J. 2015, 18, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Chehroudi, B. Hydrocarbon Emission from Spark-Ignited Engines. Available online: https://www.academia.edu/26659074 (accessed on 1 November 2020).
- Swithenbank, J. Combustion Fundamentals; Technical Report; Department of Fuel Technology and Chemical Engineering, The University of Sheffield: Sheffield, UK, 1970. [Google Scholar]
- Wei, H.; Shao, A.; Hua, J.; Zhou, L.; Feng, D. Effects of applying a Miller cycle with split injection on engine performance and knock resistance in a downsized gasoline engine. Fuel 2018, 214, 98–107. [Google Scholar] [CrossRef]
- ProfessCars. ProfessCars’ 2015 McLaren MP4-12C engine Horsepower/Torque Curve. Automobile-Catalogue. Available online: https://www.automobile-catalog.com/curve/2015/1457915/mclarenmp4-12c.html (accessed on 1 November 2020).
- Li, Q.; Jin, W.; Huang, Z. Laminar flame characteristics of C1–C5 primary alcohol-isooctane blends at elevated temperature. Energies 2016, 9, 511. [Google Scholar] [CrossRef] [Green Version]
- Larfeldt, J. Technology options and plant design issues for fuel-flexible gas turbines. In Fuel Flexible Energy Generation; Elsevier: Amsterdam, The Netherlands, 2016; pp. 271–291. [Google Scholar]
- Zhao, H.; Ge, Y.; Tan, J.; Yin, H.; Guo, J.; Zhao, W.; Dai, P. Effects of different mixing ratios on emissions from passenger cars fueled with methanol/gasoline blends. J. Environ. Sci. 2011, 23, 1831–1838. [Google Scholar] [CrossRef]
- Masum, B.; Masjuki, H.; Kalam, M.; Fattah, I.R.; Palash, S.; Abedin, M. Effect of ethanol–gasoline blend on NOx emission in SI engine. Renew. Sustain. Energy Rev. 2013, 24, 209–222. [Google Scholar] [CrossRef]
- Shuai, S.J.; Wang, Y.; Li, X.; Fu, H.; Xiao, J. Impact of octane number on fuel efficiency of modern vehicles. SAE Int. J. Fuels Lubr. 2013, 6, 702–712. [Google Scholar] [CrossRef]
- Mechadyne, R.A.A. Part Load Pumping Losses in an SI Engine. Available online: https://www.mechadyne-int.com/reference/throttle-less-operation/part-load-pumping-losses-in-an-si-engine/ (accessed on 1 January 2021).
- Akma, T.N. Miller Cycle Combustion Strategy for Downsized Gasoline Engines. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2017. [Google Scholar]
- He, X.; Durrett, R.P.; Sun, Z. Late intake valve closing as an emissions control strategy at Tier 2 Bin 5 engine-out NOx level. SAE Int. J. Engines 2009, 1, 427–443. [Google Scholar] [CrossRef]
Speed (RPM) | 8500 | 8000 | 7500 | 7000 | 6500 | 6000 |
---|---|---|---|---|---|---|
Power PD (%) | ||||||
Torque PD (%) | 3.64 | 0.61 | 4.64 | 0.69 | 0.85 | 0.56 |
Speed (RPM) | 5500 | 5000 | 4500 | 4000 | 3500 | 3000 |
Power PD (%) | 8 | 0.50 | ||||
Torque PD (%) | 0.023 | 0.22 | 0.64 | 0.34 | 0.37 | |
Speed (RPM) | 2750 | 2500 | 2000 | 1500 | 1000 | |
Power PD (%) | 2.84 | |||||
Torque PD (%) | 1.56 |
Technology | Power (kW) | EFFB (%) | BSFC (kg/kWh) | NOx | CO | HC | |||
---|---|---|---|---|---|---|---|---|---|
3500 RPM | 7500 RPM | 3500 RPM | 7500 RPM | 3500 RPM | 7500 RPM | 7500 RPM | |||
M5 | +0.8 | +0.6 | +0.001 | +0.001 | +15% | -42% | % | ||
M30 | +2.1 | +1.3 | +0.030 | +0.039 | % | % | +46% | ||
M40 | +2.5 | +1.3 | +0.045 | +0.059 | % | % | +66% | ||
E5 | +0.5 | +0.05 | +0.7 | +0.6 | 0 | 0 | +11% | -36% | % |
E40 | +2.0 | +1.3 | +0.029 | +0.037 | % | % | +42% | ||
E50 | +2.2 | +1.3 | +0.040 | +0.051 | % | % | +56% | ||
30 Deg EIVC | 17.7 | +0.12 | 0 | 0 | % | % | +3% | ||
44 Deg EIVC | 24.3 | +0.17 | +0.001 | % | % | +12% | |||
31 Deg LIVC | +0.004 | +0.003 | % | % | +10% | ||||
E5 + 30 EIVC | +18.3 | +0.87 | +0.59 | +0.0004 | +9% | % | 0% | ||
M30 + 30 EIVC | +2.21 | +1.23 | +0.029 | +0.0391 | % | % | +51% | ||
E50 + 44 EIVC | +2.39 | +1.09 | +0.039 | +0.0529 | % | % | +69% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oxenham, L.; Wang, Y. A Study of the Impact of Methanol, Ethanol and the Miller Cycle on a Gasoline Engine. Energies 2021, 14, 4847. https://doi.org/10.3390/en14164847
Oxenham L, Wang Y. A Study of the Impact of Methanol, Ethanol and the Miller Cycle on a Gasoline Engine. Energies. 2021; 14(16):4847. https://doi.org/10.3390/en14164847
Chicago/Turabian StyleOxenham, Luke, and Yaodong Wang. 2021. "A Study of the Impact of Methanol, Ethanol and the Miller Cycle on a Gasoline Engine" Energies 14, no. 16: 4847. https://doi.org/10.3390/en14164847
APA StyleOxenham, L., & Wang, Y. (2021). A Study of the Impact of Methanol, Ethanol and the Miller Cycle on a Gasoline Engine. Energies, 14(16), 4847. https://doi.org/10.3390/en14164847