Effect of Rice Husk Filler on the Structural and Dielectric Properties of Palm Oil as an Electrical Insulation Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physicochemical Analysis
2.3. Dielectric Properties
3. Results and Discussions
3.1. FTIR Results
3.2. Particle Size Results
3.3. BDV Results of PO
3.4. Frequency Response Analysis Results of PO
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahanta, D.K.; Laskar, S. Electrical Insulating Liquid: A Review. J. Adv. Dielectr. 2017, 7, 1730001. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.D. Raw Materials. In Fats and Oils; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–72. [Google Scholar]
- O’Brien, R.D. Fats and Oils Processing. In Fats and Oils; CRC Press: Boca Raton, FL, USA, 2009; pp. 73–196. [Google Scholar]
- Champa, V.; Nagashree, A.N.; Sumangala, B.V.; Nagabhushana, G.R. Breakdown Behaviour of New Bio-Degradable Dielectric Coolants under 50Hz AC for Different Electrode Configurations. Mater. Today Proc. 2018, 5, 3099–3108. [Google Scholar] [CrossRef]
- Nambiappan, B.; Ismail, A.; Hashim, N.; Ismail, N.; Shahari, D.N.; Idris, N.A.N.; Omar, N.; Salleh, K.M.; Hassan, N.A.M.; Kushairi, A. Malaysia: 100 Years of Resilient Palm Oil Economic Performance. J. Oil Palm Res. 2018, 30, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Taslak, E.; Arikan, O.; Kumru, C.F.; Kalenderli, O. Analyses of the Insulating Characteristics of Mineral Oil at Operating Conditions. Electr. Eng. 2018, 100, 321–331. [Google Scholar] [CrossRef]
- Palm Oil Explorer. Available online: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=4243000&sel_year=2020&rankby=Production (accessed on 19 January 2021).
- Subburaj, S.K.; Rengaraj, M.; Mariappan, R. Evaluating Critical Characteristics of Vegetable Oil as a Biodegradable Insulating Oil for Transformer. Int. J. Emerg. Electr. Power Syst. 2020, 21, 20200128. [Google Scholar] [CrossRef]
- Makmud, M.Z.H.; Illias, H.A.; Chee, C.Y.; Sarjadi, M.S. Influence of Conductive and Semi-Conductive Nanoparticles on the Dielectric Response of Natural Ester-Based Nanofluid Insulation. Energies 2018, 11, 333. [Google Scholar] [CrossRef] [Green Version]
- Maneerot, S.; Pattanadech, N. Effect of Contaminant on Breakdown Characteristics of Mineral Oil and Commercial Natural Ester. In Proceedings of the 2018 15th International Conference on Electrical Engineering/Electronics Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Rai, Thailand, 18–21 July 2018; pp. 688–691. [Google Scholar]
- Mohamad, M.S.; Zainuddin, H.; Ghani, S.A.; Chairul, I.S. AC Breakdown Voltage and Viscosity of Palm Fatty Acid Ester (PFAE) Oil-Based Nanofluids. J. Electr. Eng. Technol. 2017, 12, 2333–2341. [Google Scholar]
- Attarilar, S.; Yang, J.; Ebrahimi, M.; Wang, Q.; Liu, J.; Tang, Y.; Yang, J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective. Front. Bioeng. Biotechnol. 2020, 8, 822. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.M.; Kadirgamma, K.; Noor, M.M.; Aik, L.K. Palm Oil Based Nanofluids for Enhancing Heat Transfer and Rheological Properties. Heat Mass Transf. 2018, 54, 3163–3169. [Google Scholar] [CrossRef]
- Saenkhumwong, W.; Suksri, A. The Improved Dielectric Properties of Natural Ester Oil by Using ZnO and TiO2 Nanoparticles. Eng. Appl. Sci. Res. 2017, 44, 148–153. [Google Scholar]
- Oparanti, S.O.; Khaleed, A.A.; Abdelmalik, A.A. Nanofluid from Palm Kernel Oil for High Voltage Insulation. Mater. Chem. Phys. 2021, 259, 123961. [Google Scholar] [CrossRef]
- Nagarajan, K.J.; Balaji, A.N.; Ramanujam, N.R. Extraction of Cellulose Nanofibers from Cocos Nucifera Var Aurantiaca Peduncle by Ball Milling Combined with Chemical Treatment. Carbohydr. Polym. 2019, 212, 312–322. [Google Scholar] [CrossRef]
- Choi, K.; Do Nam, J.; Kwon, S.H.; Choi, H.J.; Islam, M.S.; Kao, N. Microfibrillated Cellulose Suspension and Its Electrorheology. Polymers 2019, 11, 2119. [Google Scholar] [CrossRef] [Green Version]
- Azat, S.; Korobeinyk, A.V.; Moustakas, K.; Inglezakis, V.J. Sustainable Production of Pure Silica from Rice Husk Waste in Kazakhstan. J. Clean. Prod. 2019, 217, 352–359. [Google Scholar] [CrossRef]
- Chouksey, A.; Dev, N.; Kumari, S. Review Paper on Utilization Potential of Rice Husk Ash as Supplementary Cementitious Material. In Sustainable Construction and Building Materials; Das, B.B., Neithalath, N., Eds.; Springer: Singapore, 2019; pp. 673–684. ISBN 9789811333170. [Google Scholar]
- He, S.; Han, L.; Liu, L.; Wang, J.; Huang, Z.; Hau, S. Preparation and Properties of Nano-Cellulose Modified Natural Ester Liquids. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 294–297. [Google Scholar]
- Awang, N.W.; Ramasamy, D.; Kadirgama, K.; Samykano, M.; Najafi, G.; Sidik, N.A.C. An Experimental Study on Characterization and Properties of Nano Lubricant Containing Cellulose Nanocrystal (CNC). Int. J. Heat Mass Transf. 2019, 130, 1163–1169. [Google Scholar] [CrossRef]
- Khalf, A.I.; Ward, A.A. Use of Rice Husks as Potential Filler in Styrene Butadiene Rubber/Linear Low Density Polyethylene Blends in the Presence of Maleic Anhydride. Mater. Des. 2010, 31, 2414–2421. [Google Scholar] [CrossRef]
- Bisht, N.; Gope, P.C. Effect of Alkali Treatment on Mechanical Properties of Rice Husk Flour Reinforced Epoxy Bio-Composite. Mater. Today Proc. 2018, 5, 24330–24338. [Google Scholar] [CrossRef]
- Dabbak, S.Z.A.; Illias, H.A.; Ang, B.C.; Latiff, N.A.A.; Makmud, M.Z.H. Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation. Energies 2018, 11, 1448. [Google Scholar] [CrossRef] [Green Version]
- Citroni, R.; Di Paolo, F.; Di Carlo, A. Replacing Noble Metals with Alternative Metals in MID-IR Frequency: A Theoretical Approach. In Proceedings of the AIP Conference Proceedings, Gold Coast, QLD, Australia, 2–3 May 2018. [Google Scholar]
- Javed, M.; Shaik, A.H.; Khan, T.A.; Imran, M.; Aziz, A.; Ansari, A.R.; Chandan, M.R. Synthesis of Stable Waste Palm Oil Based CuO Nanofluid for Heat Transfer Applications. Heat Mass Transf. 2018, 54, 3739–3745. [Google Scholar] [CrossRef]
- Suleiman, A.A.; Muhamad, N.A.; Bashir, N.; Murad, N.S.; Arief, Y.Z.; Phung, B.T. Effect of Moisture on Breakdown Voltage and Structure of Palm Based Insulation Oils. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 2119–2126. [Google Scholar] [CrossRef]
- Maharana, M.; Nayak, S.K.; Sahoo, N. Karanji Oil as a Potential Dielectrics Liquid for Transformer. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1871–1879. [Google Scholar] [CrossRef]
- Nobbmann, U. Intensity-Volume-Number: Which Size Is Correct? Available online: https://www.materials-talks.com/blog/2017/01/23/intensity-volume-number-which-size-is-correct/ (accessed on 20 May 2021).
- Abbasi, R.; Baheti, V. Preparation of Nanocellulose from Jute Fiber Waste. J. Text. Eng. Fash. Technol. 2018, 4, 101–104. [Google Scholar] [CrossRef]
- Mehta, D.M.; Kundu, P.; Chowdhury, A.; Lakhiani, V.K.; Jhala, A.S. A Review of Critical Evaluation of Natural Ester Vis-a-Vis Mineral Oil Insulating Liquid for Use in Transformers: Part II. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1705–1712. [Google Scholar] [CrossRef]
- Rajeswari, R.; Chandrasekar, S.; Karthik, B. Statistical Analysis of Partial Discharge, Lightning Impulse and BDV Characteristics of Nano SiO2-Corn Oil for HV Insulation Applications. J. Electr. Eng. Technol. 2019, 14, 877–888. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Y. Surface-Modification of SiO2 Nanoparticles with Oleic Acid. Appl. Surf. Sci. 2003, 211, 315–320. [Google Scholar] [CrossRef]
- Khor, S.F.; Md Yusoff, M.H.A.; Cheng, E.M.; Rojan, M.A.; Johar, B.; Chik, A.; Talib, Z.A.; Poobalan, B. Dielectric Spectroscopy on Mixture of Rice Husk, Rice Husk Ash and Rice Bran from 4 Hz to 1 MHz. Int. J. Geomate 2016, 11, 2150–2154. [Google Scholar] [CrossRef]
- Koch, M.; Tenbohlen, S.; Stirl, T. Diagnostic Application of Moisture Equilibrium for Power Transformers. IEEE Trans. Power Deliv. 2010, 25, 2574–2581. [Google Scholar] [CrossRef]
- Rajab, A.; Tsuchie, M.; Kozako, M.; Hikita, M.; Suzuki, T. PD Behaviors of Monoester Insulating Oil under Different Moisture Contents. Telkomnika 2018, 16, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, N.A.; Azis, N.; Jasni, J.; Kadir, M.Z.A.A.; Yunus, R.; Yaakub, Z. Physiochemical and Electrical Properties of Refined, Bleached and Deodorized Palm Oil under High Temperature Ageing for Application in Transformers. Energies 2018, 11, 1583. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.O. Grain and Seed Moisture Sensing Applications. In Dielectric Properties of Agricultural Materials and their Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 77–108. [Google Scholar]
- Jiang, J.P.; Du, B.X.; Cavallini, A. Effect of Moisture Migration on Surface Discharge on Oil-Pressboard of Power Transformers under Cooling. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1743–1751. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Q.; Zhang, C.; Li, F.; Yang, J.; Ai, L.; Jiang, H.; Zhong, L. Influence of Moisture Content on Dielectric Properties of Pressboard Impregnated in Mineral Insulating Oil and Natural Ester. In Proceedings of the 2017 IEEE 19th International Conference on Dielectric Liquids(ICDL), Manchester, UK, 25–29 June 2017; pp. 1–4. [Google Scholar]
Sample Abbreviation | Amount of Rice Husk [g/L] |
---|---|
PO | - |
PORH1 | 0.01 |
PORH2 | 0.1 |
Sample | Breakdown Voltage [kV] |
---|---|
PO | 32.7 |
PORH1 | 41.1 |
PORH2 | 46.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junian, S.S.; Makmud, M.Z.H.; Jamain, Z.; Mohd Amin, K.N.; Dayou, J.; Azil Illias, H. Effect of Rice Husk Filler on the Structural and Dielectric Properties of Palm Oil as an Electrical Insulation Material. Energies 2021, 14, 4921. https://doi.org/10.3390/en14164921
Junian SS, Makmud MZH, Jamain Z, Mohd Amin KN, Dayou J, Azil Illias H. Effect of Rice Husk Filler on the Structural and Dielectric Properties of Palm Oil as an Electrical Insulation Material. Energies. 2021; 14(16):4921. https://doi.org/10.3390/en14164921
Chicago/Turabian StyleJunian, Siti Sarah, Mohamad Zul Hilmey Makmud, Zuhair Jamain, Khairatun Najwa Mohd Amin, Jedol Dayou, and Hazlee Azil Illias. 2021. "Effect of Rice Husk Filler on the Structural and Dielectric Properties of Palm Oil as an Electrical Insulation Material" Energies 14, no. 16: 4921. https://doi.org/10.3390/en14164921
APA StyleJunian, S. S., Makmud, M. Z. H., Jamain, Z., Mohd Amin, K. N., Dayou, J., & Azil Illias, H. (2021). Effect of Rice Husk Filler on the Structural and Dielectric Properties of Palm Oil as an Electrical Insulation Material. Energies, 14(16), 4921. https://doi.org/10.3390/en14164921