Condition Monitoring of Internal Combustion Engines in Thermal Power Plants Based on Control Charts and Adapted Nelson Rules
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description of the 18V46 Engine
2.2. Subsystems and Variables
2.3. Statistical Model
- Rule #0: First point above (or below) the upper (or lower) control limit.
- Rule #1: Second point in the same Zone A, in three consecutive measurements.
- Rule #2: Fourth point in Zone B or A (on the same side), in five consecutive measurements.
- Rule #3: Ninth consecutive point on the same side of the average.
- Rule #4: Sixth consecutive point always below (or above) the previous ones.
- Rule #5: Eighth point outside C zones.
- Rule #6: Fifteenth consecutive point within C zones.
- Rule #7: Fourteenth alternating point up and down in any zone.
3. Results
3.1. Operation within Normality
- Rule #6 is well activated for the majority of variables in this subsystem. This is an indication that their data points are inside the region (as seen for variable SOC051T027PV from the control chart of Figure 5, where the majority of data points are between the green lines).
- Rules #5 and #2 have some percentage of activation. This is an indication that these variables have points that are outside the region, although they are still statistically in normality.
- Rule #1 indicates some very small percentage of data points (for variables SOC051T019PV, SOC051T021PV, SOC051T022PV, SOC051T034PV and SOC051T058PV) in the regions either between and or between and , which are still statistically in normality as long as these percentages are below 4.28%.
- Rule #0 indicates that none of the variables have points outside the control limits of .
3.2. Operation on the Day of the Shutdown Event
3.3. Investigation on the Shutdown Event
4. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CBM | Condition-based maintenance |
CC | Control charts |
EWMA | Exponentially Weighted Moving Average |
GD | Gas–Diesel |
HFO | Heavy Fuel Oil |
ICE | Internal combustion engine |
LCL | Lower control limit |
ML | Middle line (average) |
SCADA | Supervisory Control and Data Acquisition System |
SPC | Statistical process control |
SM | Statistical model |
TPP | Thermal power plant |
UCL | Upper control limit |
WISE | Wärtsilä Information System Environment |
WOIS | Wärtsilä Operator’s Interface System |
References
- Lacerda, L.D.; Santos, J.A.; Marins, R.V.; Silva, F.A.D. Limnology of the largest multi-use artificial reservoir in NE Brazil: The Castanhão Reservoir, Ceará State. An. Da Acad. Bras. De Ciências 2018, 90, 2073–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmin, A.A.; Lambert-Torres, G. Application of particle swarm optimization to optimal power systems. Int. J. Innov. Comput. Inf. Control 2012, 8, 1705–1716. [Google Scholar]
- Pearre, N.; Swan, L. Reimagining renewable electricity grid management with dispatchable generation to stabilize energy storage. Energy 2020, 203, 117917. [Google Scholar] [CrossRef]
- Mendonca, P.; Bonaldi, E.; de Oliveira, L.; Lambert-Torres, G.; da Silva, J.B.; da Silva, L.B.; Salomon, C.; Santana, W.; Shinohara, A. Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis. Electr. Power Syst. Res. 2017, 149, 30–45. [Google Scholar] [CrossRef]
- Pang, L.; Yi, S.; Duan, L.; Li, W.; Yang, Y. Thermal stress and cyclic stress analysis of a vertical water-cooled wall at a utility boiler under flexible operation. Energies 2019, 12, 1170. [Google Scholar] [CrossRef] [Green Version]
- Jaremkiewicz, M.; Taler, J. Online Determining Heat Transfer Coefficient for Monitoring Transient Thermal Stresses. Energies 2020, 13, 704. [Google Scholar] [CrossRef] [Green Version]
- Brutsch, R.; Tari, M.; Frohlich, K.; Weiers, T.; Vogelsang, R. Insulation Failure Mechanisms of Power Generators. IEEE Electr. Insul. Mag. 2008, 24, 17–25. [Google Scholar] [CrossRef]
- Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S. Impacts of wind and solar on emissions and wear and tear of fossil-fueled generators. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Ribeiro, L.; Bonaldi, E.; de Oliveira, L.; da Silva, L.B.; Salomon, C.; Santana, W.; da Silva, J.B.; Lambert-Torres, G. Equipment for Predictive Maintenance in Hydrogenerators. AASRI Procedia 2014, 7, 75–80. [Google Scholar] [CrossRef]
- Sant’Ana, W.C.; Lambert-Torres, G.; da Silva, L.E.B.; Bonaldi, E.L.; de Oliveira, L.E.D.L.; Salomon, C.P.; da Silva, J.G.B. Influence of rotor position on the repeatability of frequency response analysis measurements on rotating machines and a statistical approach for more meaningful diagnostics. Electr. Power Syst. Res. 2016, 133, 71–78. [Google Scholar] [CrossRef]
- Salomon, C.P.; Ferreira, C.; Sant’Ana, W.C.; Lambert-Torres, G.; Borges da Silva, L.E.; Bonaldi, E.L.; de Oliveira, L.E.d.L.; Torres, B.S. A study of fault diagnosis based on electrical signature analysis for synchronous generators predictive maintenance in bulk electric systems. Energies 2019, 12, 1506. [Google Scholar] [CrossRef] [Green Version]
- Audas, J. Requirement Analysis of a Signal Database for Power Plant Automation Signals. Master’s Thesis, University of Vaasa, Vaasa, Finland, 2014. [Google Scholar]
- Da Silva Ribeiro, P.F.; Nascimento, M.H.R.; Junior, J.d.A.B.; Leite, J.C.; de Freitas, C.A.O. Monitoring System of the Parameters of Operation of internal Combustion Engines in Thermoelectric Plants for Fault Detection. Int. J. Adv. Eng. Res. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Samtani, S.; Yu, S.; Zhu, H.; Patton, M.; Chen, H. Identifying SCADA vulnerabilities using passive and active vulnerability assessment techniques. In Proceedings of the 2016 IEEE Conference on Intelligence and Security Informatics (ISI), Tucson, AZ, USA, 28–30 September 2016; pp. 25–30. [Google Scholar] [CrossRef]
- Mayadevi, N.; Vinodchandra, S.; Ushakumari, S. Failure forecast engine for power plant expert system shell. In Proceedings of the 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), Ramanathapuram, India, 23–25 August 2012; pp. 380–384. [Google Scholar] [CrossRef]
- Nevala, T. Upgrading the WOIS Used in the Gas Engine Test Run. Bachelor’s Thesis, University of Vaasa, Vaasa, Finland, 2018. (In Finnish). [Google Scholar]
- Wärtsilä Corporation. Wärtsilä Operator’s Interface System—WOIS User’s Manual; Wärtsilä Corporation: Helsinki, Finland, 2008. [Google Scholar]
- Maridis GmbH. MarPrime Technical Data; Maridis GmbH: Rostock, Germany, 2015. [Google Scholar]
- Bonaldi, E.; Souza, S.; Lima, D.; Lacerda, J.; Silva, L.; Oliveira, L.; Assunção, F.; Santos, C.; Teixeira, C.; Campos, M.; et al. Monitoring System of Power Operation Condition of Internal Combustion Engines. In Proceedings of the 13th Latin-American Congress on Electricity Generation and Transmission—CLAGTEE 2019, Santiago de Chile, Chile, 20–23 October 2019. (In Portuguese). [Google Scholar]
- Bonaldi, E.; Oliveira, L.; Lambert-Torres, G.; Borges da Silva, J.; Silva, L.; Ribeiro, M.; Venceslau, A. Sistema para Diagnóstico Termomecânico de Falhas em Motores de Combustão Interna. In Proceedings of the IX Congresso Brasileiro de Planejamento Energético, IX CBPE, Florianópolis, Brazil, 25–27 August 2014. (In Portuguese). [Google Scholar]
- Noradino Montes Dorantes, P.; Pablo Nieto Gonzalez, J.; Maximiliano Mendez, G. Fault Detection Systems via a Novel hybrid Methodology for Fuzzy Logic Systems based on Individual base inference and Statistical Process Control. IEEE Lat. Am. Trans. 2014, 12, 706–712. (In Spanish) [Google Scholar] [CrossRef]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lampreia, S.; Requeijo, J.; Lobo, V. Diesel engine vibration monitoring based on a statistical model. MATEC Web Conf. EDP Sci. 2018, 211, 03007. [Google Scholar] [CrossRef]
- Griffiths, D.; Bunder, M.; Gulati, C.; Onizawa, T. The probability of an out of control signal from Nelson’s supplementary Zig-Zag test. J. Stat. Theory Pract. 2010, 4, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Wärtsilä Corporation. Coding of processes in Power Plants; Wärtsilä Corporation: Helsinki, Finland, 2003. [Google Scholar]
- Oliveira, C.C.d.; Granato, D.; Caruso, M.S.F.; Sakuma, A.M. Manual para elaboracao de cartas de controle para monitoramento de processos de medicao quantitativos em laboratorios de ensaio; Instituto Adolfo Lutz: São Paulo, Brazil, 2013; p. 18. (In Portuguese) [Google Scholar]
- Montgomery, D.C. Introduction to Statistical Quality Control, 3rd ed.; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
Subsystem | Variable | Description |
---|---|---|
Intake Air | SNB##1T001PV | Turbo air inlet temperature |
SNB##1T002PV | Charge air temperature in receiver | |
SNB##1P002PV | Charge air pressure in receiver | |
Turbocharger | SNA##1T055PV | Exhaust gas temperature before turbo A |
NHA##1T001PV | Exhaust gas temperature after turbo A | |
SNA##1T056PV | Exhaust gas temperature before turbo B | |
NHA##1T002PV | Exhaust gas temperature after turbo B | |
SOB##1S002PV | Turbo A speed | |
SOB##1S003PV | Turbo B speed | |
Fuel Oil | SPA##1T002PV | Fuel oil inlet temperature |
SPA##1P004PV | Fuel oil inlet pressure | |
Cylinders | SOC##1TnnnPV | Cylinder (identified by nnn) liner temperature |
Bearings | SOC##1TnnnPV | Main/Thrust bearing (identified by nnn) temperature |
Exhaust Gases | SNA##1TnnnPV | Exh.gas. of cylinder (identified by nnn) temperature |
Natural Gas | ZCA##1P101PV | Valve skid gas pressure inlet |
ZCA##1P102PV | Valve skid gas pressure outlet | |
ZCA##1Q101PV | Main gas flow | |
ZCA##1T001PV | Valve skid gas temperature outlet | |
Generator | BAG##1TnnnPV | Generator winding or bearings (identified by nnn) temperature |
Cooling water | QEA##1TnnnPV | Cooling water temperatures (at positions identified by nnn) |
SVH##1TnnnPV | HT water temperatures (at outlets identified by nnn) | |
SV(H/L)##1P003PV | (H/L)T water inlet pressure | |
Lubricating Oil | SQA##1TnnnPV | Lube oil temperature (at positions identified by nnn) |
SQA##1PnnnPV | Lube oil pressure (at positions identified by nnn) | |
Others | STA##1PnnnPV | Air pressure (at positions identified by nnn) |
SOB##1S001PV | Engine speed | |
SAE##1L001PV | Torsional vibration | |
BAE##1UP01PV | Generator active power | |
CFC##1MODEINF | Fuel sharing (GD/HFO) mode | |
CFC##1FSPV | Fuel sharing (GD/HFO) percentage | |
NGA901T001PV | Outdoor temperature | |
NGA901E001PV | Absolute humidity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilas Boas, F.M.; Borges-da-Silva, L.E.; Villa-Nova, H.F.; Bonaldi, E.L.; Oliveira, L.E.L.; Lambert-Torres, G.; Assuncao, F.d.O.; Costa, C.I.d.A.; Campos, M.M.; Sant’Ana, W.C.; et al. Condition Monitoring of Internal Combustion Engines in Thermal Power Plants Based on Control Charts and Adapted Nelson Rules. Energies 2021, 14, 4924. https://doi.org/10.3390/en14164924
Vilas Boas FM, Borges-da-Silva LE, Villa-Nova HF, Bonaldi EL, Oliveira LEL, Lambert-Torres G, Assuncao FdO, Costa CIdA, Campos MM, Sant’Ana WC, et al. Condition Monitoring of Internal Combustion Engines in Thermal Power Plants Based on Control Charts and Adapted Nelson Rules. Energies. 2021; 14(16):4924. https://doi.org/10.3390/en14164924
Chicago/Turabian StyleVilas Boas, Fernanda Mitchelly, Luiz Eduardo Borges-da-Silva, Helcio Francisco Villa-Nova, Erik Leandro Bonaldi, Levy Ely Lacerda Oliveira, Germano Lambert-Torres, Frederico de Oliveira Assuncao, Claudio Inacio de Almeida Costa, Mateus Mendes Campos, Wilson Cesar Sant’Ana, and et al. 2021. "Condition Monitoring of Internal Combustion Engines in Thermal Power Plants Based on Control Charts and Adapted Nelson Rules" Energies 14, no. 16: 4924. https://doi.org/10.3390/en14164924
APA StyleVilas Boas, F. M., Borges-da-Silva, L. E., Villa-Nova, H. F., Bonaldi, E. L., Oliveira, L. E. L., Lambert-Torres, G., Assuncao, F. d. O., Costa, C. I. d. A., Campos, M. M., Sant’Ana, W. C., Lacerda, J., da Silva Junior, J. L. M., & da Silva, E. G. (2021). Condition Monitoring of Internal Combustion Engines in Thermal Power Plants Based on Control Charts and Adapted Nelson Rules. Energies, 14(16), 4924. https://doi.org/10.3390/en14164924