Optimization of the Beef Drying Process in a Heat Pump Chamber Dryer
Abstract
:1. Introduction
1.1. Microbiological Safety of the Beef Jerky Drying Process
1.2. Use of Heat Pumps in Drying Chambers
- Convection drying—heat energy is supplied by means of a heating agent, usually steam or gas. The agent flows around the surface of the material or through a layer of dried material;
- Contact drying—a process in which heat energy is obtained by conduction as the material rests or moves on heated surfaces during contact drying;
- Radiation drying—the material is radiated with heat energy by radiators;
- Dielectric—is the drying by applying an alternating electric field;
- Sublimation—involving the removal of water from frozen material by sublimation of ice [24].
- High energy input per dry mass unit,
- Non-uniformity of the drying process related to the distribution of air across different parts of the chamber,
- Drying process management.
2. Methods and Simulations
Modifications to the Drying Chamber
3. Results and Discussion
3.1. CFD Simulations
3.2. Examination of Physicochemical Properties
4. Conclusions
- It was found that in drying chambers used in beef processing technologies, non-uniform distribution of drying medium streams leads to a non-uniform degree of meat drying, and depends on the placement in the drying chamber. This leads to the necessity of moving the meat inside the chamber, which prolongs the drying process and increases energy demand.
- Conducting CFD simulations enabled optimization of the drying process, by identifying possible modifications to the design of the drying chamber.
- The best drying results were obtained in chamber 5, in which a disc rotating at 50 rpm was installed at the bottom of the chamber, directly above the air inlet, forcing a pulsating movement of the air stream in the chamber. CFD simulation of this chamber design showed a significant improvement in meat drying, both in terms of activity and water content after 10 h of the process.
- i.
- increasing the capacity of the chamber so that about 200 kg of meat can be dried,
- ii.
- use of heat pump power by renewable energy sources, e.g., solar energy from PV panels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
C:D | prescribed matrices σk turbulent Prandtl numbers for k |
C0, C1 | empirical coefficients σε turbulent Prandtl numbers for ε |
Cij | prescribed matrices E total energy |
Dij | mass diffusion coefficient vi velocity vector |
ρ | density of fluid vmag velocity magnitude |
k | turbulent kinetic energy (τij)eff deviatoric stress tensor |
ε | rate of dissipation p pressure |
μ | dynamic viscosity Prt Prandtl number |
μt | turbulent viscosity T temperature |
Gk | generation of turbulent kinetic energy cp specific heat capacity at constant |
due to the mean velocity gradients pressure | |
Gb | generation of turbulent kinetic energy u velocity magnitude in xdirection |
due to buoyancy t time | |
YM | contribution of the fluctuating dilatation Sk, Sε, Shuser-defined source terms |
in compressible turbulence to the overall Si source term for ith momentum | |
dissipation rate equation | |
C1ε, C2ε, C3ε | constants used in turbulent model |
References
- Erbay, Z.; Icier, F. A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Crit. Rev. Food Sci. Nutr. 2010, 50, 441–464. [Google Scholar] [CrossRef]
- Calicioglu, M.; Sofos, J.N.; Kendall, P. Fate of acid-adapted and non-adapted Escherichia coli O157:H7 inoculated post-drying on beef jerky treated with marinades before drying. Food Microbiol. 2003, 20, 169–177. [Google Scholar] [CrossRef]
- Cwiertniewski, K.; Polak, E.; Egierski, K. Aktywność wody, parametr trwałości produktów spożywczych (in Polish). Przemysł Spożywczy 2005, 59, 16–19. [Google Scholar]
- Perera, C.O.; Rahman, M.S. Heat pump dehumidifier drying of food. Trends Food Sci. Technol. 1997, 8, 75–79. [Google Scholar] [CrossRef]
- Ojha, K.S.; Granato, D.; Rajuria, G.; Barba, F.J.; Kerry, J.P.; Tiwari, B.K. Application of chemometrics to assess the influence of ultrasound frequency, Lactobacillus sakei culture and drying on beef jerky manufacture: Impact on amino acid profile, organic acids, texture and colour. Food Chem. 2018, 239, 544–550. [Google Scholar] [CrossRef]
- Konieczny, P.; Kowalski, R.; Prycz, J. Wybrane wyróżniki jakościowe suszonych produktów przekąskowych z mięsa wołowego (in-polish). Żywność. Nauka. Technologia. Jakość 2004, 3, 32–39. [Google Scholar]
- Mysakowski, T.; Olejnik, T. The impact of the selected methods of drying beef on the quality of the finished product. Przemysł Spożywczy 2019, 1, 24–28. [Google Scholar] [CrossRef]
- Mohan, V.P.C.; Talukdar, P. Design of an experimental set up for convective drying: Experimental studies at different drying temperature. Heat Mass Transf. 2012, 49, 31–40. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K.; Yang, W.M. Advances in heat pump systems: A review. Appl. Energy 2010, 87, 3611–3624. [Google Scholar] [CrossRef]
- Margaris, D.P.; Ghiaus, A.-G. Dried product quality improvement by air flow manipulation in tray dryers. J. Food Eng. 2006, 75, 542–550. [Google Scholar] [CrossRef]
- Gaur, A.S.; Fitiwi, D.Z.; Curtis, J. Heat pumps and our low-carbon future: A comprehensive review. Energy Res. Soc. Sci. 2020, 71, 101764. [Google Scholar] [CrossRef]
- Mishra, B.; Mishra, J.; Pati, P.; Rath, P. Dehydrated Meat Products: A Review. Int. J. Livest. Res. 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Ghasemkhani, H.; Keyhani, A.; Aghbashlo, M.; Rafiee, S.; Mujumdar, A.S. Improving exergetic performance parameters of a rotating-tray air dryer via a simple heat exchanger. Appl. Therm. Eng. 2016, 94, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Gottschalk, K.; Hassan, M.S. Mathematical model for a heat pump dryer for aromatic plant. Procedia Eng. 2013, 56, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Şevik, S. Experimental investigation of a new design solar-heat pump dryer under the different climatic conditions and drying behavior of selected products. Sol. Energy 2014, 105, 190–205. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, E.; Zhu, Z.; Wang, J.; Li, S. A comparative study on intermittent heat pump drying process of Chinese cabbage (Brassica campestris L.ssp) seeds. Food Bioprod. Process. 2013, 91, 381–388. [Google Scholar] [CrossRef]
- Fiduccia, K. The Jerky Bible: How to Dry, Cure, and Preserve Beef, Venison, Fish, and Fowl; Skyhorse Publishing: New York, NY, USA, 2015; pp. 24–26. ISBN 13 978-1629145549. [Google Scholar]
- Minea, V. Heat-Pump–Assisted Drying: Recent Technological Advances and R&D Needs. Dry. Technol. 2013, 31, 1177–1189. [Google Scholar] [CrossRef]
- Misha, S.; Mat, S. Review on the Application of a Tray Dryer System for Agricultural Products. World Appl. Sci. J. 2013, 22, 424–433. [Google Scholar] [CrossRef]
- Aktas, M.; Khanlari, A.; Aktekeli, B.; Amini, A. Analysis of a new drying chamber for heat pumpmint leaves dryer. Int. J. Hydrog. Energy 2017, 42, 18034–18044. [Google Scholar] [CrossRef]
- Erbay, Z.; Hepbasli, A. Advanced exergoeconomic evaluation of a heat pump food dryer. Biosyst. Eng. 2014, 124, 29–39. [Google Scholar] [CrossRef]
- Kneule, F. Suszenie; Wyd. Arkady: Warszawa, Poland, 1970; pp. 85–86. [Google Scholar]
- Boruch, M.; Nowakowska, K. Procesy Technologi Żywności; Wydawnictwo Politechniki Łódzkiej: Łódź, Poland, 1996; pp. 40–50. [Google Scholar]
- Skotnicka, E. Przegląd technologii suszenia materiałów sypkich (in polish). Piece Przemysłowe Kotły 2011, 4, 41–44. [Google Scholar]
- Blaszczyk, M.; Heim, A.; Olejnik, T.P. The Effect of wetting on the Course of the Drum Granulation. Chem. Process. Eng. Inz. Chem. Proces. 2017, 38, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Erbay, Z.; Hepbasli, A. Advanced Exergy Analysis of a Heat Pump Drying System Used in Food Drying. Dry. Technol. 2013, 31, 802–810. [Google Scholar] [CrossRef]
- Obraniak, A.; Orczykowska, M.; Olejnik, T.P. The effects of viscoelastic properties of the wetting liquid on the kinetics of the disc granulation process. Powder Technol. 2018, 342, 328–334. [Google Scholar] [CrossRef]
- Shi, Q.; Zheng, Y.; Zhao, Y. Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energy Convers. Manag. 2013, 71, 208–216. [Google Scholar] [CrossRef]
- Misha, S.; Mat, S.; Ruslan, M.H.; Sopian, K.; Salleh, E. The Prediction of Drying Uniformity in Tray Dryer System using CFD Simulation. Int. J. Mach. Learn. Comput. 2013, 3, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Strumiłło, C. Podstawy Teorii i Techniki Suszenia; WNT: Warszawa, Poland, 1975; p. 71. [Google Scholar]
- Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.; Lau, K.W. Solar-assisted heat-pump dryer and water heater. Appl. Energy 2003, 74, 185–193. [Google Scholar] [CrossRef]
- Aktaş, M.; Şevik, S.; Aktekeli, B. Development of heat pump and infrared-convective dryer and performance analysis for stale bread drying. Energy Convers. Manag. 2016, 113, 82–94. [Google Scholar] [CrossRef]
- Boetticher, T.; Miller, T. Jerky: The Fatted Calf’s Guide to Preserving and Cooking Dried Meaty Goods; Random House USA Inc.: New York, NY, USA, 2018; pp. 20–21. ISBN 10:1524759023. [Google Scholar]
- Ahmat, T.; Barka, M.; Aregba, A.-W.; Bruneau, D. Convective Drying Kinetics of Fresh Beef: An Experimental and Modeling Approach. J. Food Process. Preserv. 2015, 39, 2581–2595. [Google Scholar] [CrossRef]
- Gomez, M.A.D.; Velasco, C.A.G.; Ratkovich, N.; Daza, J.C.G. Numerical Analysis of a Convective Drying Chamber from Drying Air Velocity and Temperature Perspective. In Proceedings of the 3rd World Congress on Momentum, Heat and Mass Transfer, Budapest, Hungary, 12–14 April 2018. [Google Scholar]
- Mirage, P.S. Prediction of the air velocity field in modern meat dryersusing unsteady computational fluid dynamics (CFD) models. J. Food Eng. 2003, 60, 41–48. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries: La Canada, CA, USA, 2006; ISBN 1928729088. [Google Scholar]
- ANSYS Inc. ANSYS Fluent Theory Guide; Release 15.0; ANSYS Inc.: Canonsburg, PA, USA, 2013; pp. 51–57. [Google Scholar]
- Sosnowski, M.; Krzywanski, J.; Gnatowska, R. Polyhedral meshing as an innovative approach to computational domain dis-cretization of a cyclone in a fluidized bed CLC unit. In APISAT 2019: Asia Pacific International Symposium on Aerospace Technology; Engineers Australia: Barton, Australia, 2018; Volume 180, p. 227. [Google Scholar]
- Misha, S.; Sohif, M.; Afzanizam Mohd Rosli, M.; Ruslan, M.H.; Bin Sopian, K.; Salleh, E. Simulation of Air Flow Distribution in a Tray Dryer by CFD, Recent Advances in Renewable Energy Sources, WSEAS. In Proceedings of the 9th International Conference on Renewable Energy Sources (RES’ 15), Kuala Lumpur, Malaysia, 23–25 April 2015. [Google Scholar]
- Misha, S.; Mat, S.; Ruslan, M.H.; Sopian, K.; Salleh, E. The CFD Simulation of Tray Dryer Design for Kenaf Core Drying. Appl. Mech. Mater. 2013, 393, 717–722. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.W. Computational fluid dynamics (CFD)—An effective and efficient design and analysis tool for the food industry: A review. Trends Food Sci. Technol. 2006, 17, 600–620. [Google Scholar] [CrossRef]
- Gavrila, C.; Ghiaus, A.G.; Gruia, I. Heat and Mass Transfer in Convective Drying Processes. In Proceedings of the COMSOL Conference, Hannover, Germany, 4–6 November 2008. [Google Scholar]
- Mathioulakis, E.; Karathanos, V.; Belessiotis, V. Simulation of air movement in a dryer by computational fluid dynamics: Application for the drying of fruits. J. Food Eng. 1998, 36, 183–200. [Google Scholar] [CrossRef]
- Slama, M.; Bex, C.C.; Pinon, G.; Togneri, M.; Evans, I. Lagrangian Vortex Computations of a Four Tidal Turbine Array: An Example Based on the NEPTHYD Layout in the Alderney Race. Energies 2021, 14, 3826. [Google Scholar] [CrossRef]
- Choi, S.K.; Choi, Y.S.; Jeong, Y.W.; Han, S.Y.; Van Nguyen, Q. Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor. Energies 2020, 13, 6605. [Google Scholar] [CrossRef]
- De Oliveira, M.A.; De Moraes, P.G.; De Andrade, C.L.; Bimbato, A.M.; Pereira, L.A.A. Control and Suppression of Vortex Shedding from a Slightly Rough Circular Cylinder by a Discrete Vortex Method. Energies 2020, 13, 4481. [Google Scholar] [CrossRef]
- Jarrin, N.; Benhamadouche, S.; Laurence, D.; Prosser, R. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 2006, 27, 585–593. [Google Scholar] [CrossRef] [Green Version]
Modification | Description of Implemented Modifications |
---|---|
Modification 1 |
|
Modification 2 |
|
Modification 3 |
|
Modification 4 |
|
Modification 5 |
|
Standard. | Wa | Wc% | Mod. 4 | Wa | Wc% | Mod.5 | Wa | Wc% |
---|---|---|---|---|---|---|---|---|
1 h | 1 h | 1 h | ||||||
UL | 0.869 | 66.0 | UL | 0.872 | 69.2 | UL | 0.866 | 67.4 |
UR | 0.873 | 65.3 | UR | 0.878 | 66.8 | UR | 0.867 | 63.0 |
ML | 0.845 | 66.0 | ML | 0.828 | 64.1 | ML | 0.851 | 64.2 |
MR | 0.849 | 64.8 | MR | 0.861 | 70.1 | MR | 0.854 | 65.9 |
DL | 0.857 | 61.8 | DL | 0.865 | 68.4 | DL | 0.877 | 59.9 |
DR | 0.845 | 62.5 | DR | 0.849 | 61.1 | DR | 0.867 | 61.5 |
Aver. | 0.856 | 64.4 | Aver. | 0.859 | 66.6 | Aver. | 0.864 | 63.6 |
3 h | 3 h | 3 h | ||||||
UL | 0.855 | 50.4 | UL | 0.865 | 53.7 | UL | 0.861 | 48.9 |
UR | 0.859 | 45.6 | UR | 0.860 | 49.5 | UR | 0.866 | 46.5 |
ML | 0.857 | 44.7 | ML | 0.859 | 48.2 | ML | 0.854 | 51.0 |
MR | 0.856 | 54.3 | MR | 0.865 | 53.3 | MR | 0.854 | 55.4 |
DL | 0.854 | 57.8 | DL | 0.846 | 50.0 | DL | 0.857 | 49.5 |
DR | 0.842 | 47.0 | DR | 0.843 | 48.9 | DR | 0.860 | 44.0 |
Aver. | 0.854 | 50.0 | Aver. | 0.856 | 50.6 | Aver. | 0.859 | 49.2 |
6 h | 6 h | 6 h | ||||||
UL | 0.837 | 40.4 | UL | 0.843 | 39.8 | UL | 0.814 | 38.0 |
UR | 0.843 | 34.8 | UR | 0.835 | 38.1 | UR | 0.850 | 31.8 |
ML | 0.836 | 33.0 | ML | 0.852 | 38.3 | ML | 0.835 | 37.7 |
MR | 0.829 | 31.5 | MR | 0.824 | 35.7 | MR | 0.828 | 29.6 |
DL | 0.779 | 29.3 | DL | 0.787 | 32.7 | DL | 0.841 | 23.7 |
DR | 0.787 | 27.0 | DR | 0.798 | 32.0 | DR | 0.857 | 24.0 |
Aver. | 0.819 | 32.7 | Aver. | 0.823 | 36.1 | Aver. | 0.838 | 30.8 |
9 h | 9 h | 9 h | ||||||
UL | 0.801 | 28.4 | UL | 0.817 | 28.8 | UL | 0.789 | 24.8 |
UR | 0.809 | 24.9 | UR | 0.811 | 28.2 | UR | 0.760 | 19.2 |
ML | 0.791 | 20.6 | ML | 0.789 | 28.1 | ML | 0.773 | 23.6 |
MR | 0.801 | 23.7 | MR | 0.804 | 28.8 | MR | 0.800 | 22.4 |
DL | 0.751 | 24.0 | DL | 0.747 | 26.9 | DL | 0.769 | 24.0 |
DR | 0.755 | 16.5 | DR | 0.760 | 27.0 | DR | 0.772 | 23.7 |
Aver. | 0.785 | 23.0 | Aver. | 0.788 | 28.0 | Aver. | 0.777 | 22.9 |
10 h | 10 h | 10 h | ||||||
UL | 0.786 | 24.2 | UL | 0.801 | 25.7 | UL | 0.727 | 19.2 |
UR | 0.773 | 23.1 | UR | 0.785 | 23.9 | UR | 0.732 | 19.1 |
ML | 0.756 | 21.8 | ML | 0.771 | 21.6 | ML | 0.751 | 18.8 |
MR | 0.759 | 20.4 | MR | 0.782 | 22.8 | MR | 0.747 | 20.0 |
DL | 0.727 | 18.0 | DL | 0.765 | 19.7 | DL | 0.743 | 18.6 |
DR | 0.720 | 12.8 | DR | 0.756 | 19.4 | DR | 0.732 | 18.2 |
Aver. | 0.754 | 20.0 | Aver. | 0.777 | 22.2 | Aver. | 0.739 | 19.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olejnik, T.P.; Mysakowski, T.; Tomtas, P.; Mostowski, R. Optimization of the Beef Drying Process in a Heat Pump Chamber Dryer. Energies 2021, 14, 4927. https://doi.org/10.3390/en14164927
Olejnik TP, Mysakowski T, Tomtas P, Mostowski R. Optimization of the Beef Drying Process in a Heat Pump Chamber Dryer. Energies. 2021; 14(16):4927. https://doi.org/10.3390/en14164927
Chicago/Turabian StyleOlejnik, Tomasz P., Tymoteusz Mysakowski, Paweł Tomtas, and Radosław Mostowski. 2021. "Optimization of the Beef Drying Process in a Heat Pump Chamber Dryer" Energies 14, no. 16: 4927. https://doi.org/10.3390/en14164927
APA StyleOlejnik, T. P., Mysakowski, T., Tomtas, P., & Mostowski, R. (2021). Optimization of the Beef Drying Process in a Heat Pump Chamber Dryer. Energies, 14(16), 4927. https://doi.org/10.3390/en14164927