Recent Approaches for the Production of High Value-Added Biofuels from Gelatinous Wastewater
Abstract
:1. Introduction
2. Gelatin Compositions, Properties, Manufacturing Processes, Utilization, and Applications
3. Sustainable Solutions for Simultaneous Treatment and Energy Recovery from Gelatinous Wastewater (GWW)
3.1. Energy Recovery Pathway from Biodegradation of Gelatinous Wastewater (GWW)
3.2. Recent Trends for Biofuels (H2 and CH4) Production from Gelatinous Wastewater
4. Factors Affecting Biofuels Productivity from Gelatinous Wastewater
4.1. Gelatin Concentration
4.2. Organic Loading Rate (OLR)
4.3. Hydraulic Retention Time (HRT)
4.4. Substrate to Inoculum (S0/X0) Ratio
4.5. Type of Mixed Culture Anaerobes
4.6. Carbohydrate Concentration
4.7. Volatile Fatty Acids Concentration
4.8. pH Value
4.9. Temperature
4.10. Reactor Configuration
4.11. Ammonia Concentration
4.12. Alkalinity/VFA Ratio
4.13. Effect of Combined HRT and OLR
5. Economic Values of Energy Recovery and the Pretreated Effluent of Gelatinous Wastewater
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arturi, T.S.; Seijas, C.J.; Bianchi, G.L. A comparative study on the treatment of gelatin production plant wastewater using electrocoagulation and chemical coagulation. Heliyon 2019, 5, e01738. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi Kruthika, N.; Karthika, S.; Bhaskar Raju, G.; Prabhakar, S. Efficacy of electrocoagulation and electrooxidation for the purification of wastewater generated from gelatin production plant. J. Environ. Chem. Eng. 2013, 1, 183–188. [Google Scholar] [CrossRef]
- Marée, M.; Cole, C.; Gerber, A.; Barnard, J. Treatment of gelatine factory effluent. Water SA 1990, 16, 265–268. [Google Scholar]
- Mistry, D.; Patel, U. Treatment of Gelatin Manufacturing Wastewater using anaerobic sequential batch reactor. 5th Nirma Univ. Int. Conf. Eng. 2016, 181–186. [Google Scholar] [CrossRef]
- Mostafa, A.; Elsamadony, M.; El-Dissouky, A.; Elhusseiny, A.; Tawfik, A. Biological H2 potential harvested from complex gelatinaceous wastewater via attached versus suspended growth culture anaerobes. Bioresour. Technol. 2017, 231, 9–18. [Google Scholar] [CrossRef]
- Mostafa, A.; El-Dissouky, A.; Fawzy, A.; Farghaly, A.; Peu, P.; Dabert, P.; Le Roux, S.; Tawfik, A. Magnetite/graphene oxide nano-composite for enhancement of hydrogen production from gelatinaceous wastewater. Bioresour. Technol. 2016, 216, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yu, N.; Guo, Y. A novel process to recycle the highly concentrated calcium and chloride ions in the gelatin acidification wastewater. J. Clean. Prod. 2018, 188, 62–68. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Bundela, P.S.; Wong, J.W.C.; Li, R.; Zhang, Z. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresour. Technol. 2016, 213, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Gatnekar, S.D.; Ghalsasi, D.S.; Tamhane, B.M. The novel three tier biotechnology to convert solid waste of gelatin manufacturing unit into useful plant probiotics. Indian J. Environ. Prot. 2009, 29, 767–774. [Google Scholar]
- Pualchamy, C.; Dharmaraj, P.; Laxmanan, U. A preliminary study on co-digestion of ossein industry waste for methane production. EurAsian J. Biosci. 2008, 2, 110–114. [Google Scholar]
- Ghatnekar, S.D.; Kavian, M.F.; Sharma, S.M.; Ghatnekar, S.S.; Ghatnekar, G.S.; Ghatnekar, A.V. Application of vermi-filter-based effluent treatment plant (pilot scale) for biomanagement of liquid effluents from the gelatine industry. Dyn. Soil Dyn. Plant 2010, 4, 83–88. [Google Scholar]
- Badrinath, S.D.; Deshpande, V.P.; Gadkari, S.K.; Kaul, S.N.; Deshpande, V.P.; Gadkari, S.K. Ossein wastewater characterization and treatability study. Water Res. 1991, 25, 1439–1445. [Google Scholar] [CrossRef]
- Ismail, S.; Tawfik, A. Comprehensive study for Anammox process via multistage anaerobic baffled reactors. E3S Web Conf. 2017, 22, 00068. [Google Scholar] [CrossRef]
- Duan, F.; Wang, J.; Ismail, S.; Sung, S.; Cui, Z.; Ni, S.-Q. Hydroxypropyl-β-cyclodextrin improves the removal of polycyclic aromatic hydrocarbons by aerobic granular sludge. Environ. Technol. 2021, 1–7. [Google Scholar] [CrossRef]
- Ismail, S.; Elreedy, A.; Fujii, M.; Ni, S.; Tawfik, A.; Elsamadony, M. Fatigue of anammox consortia under long-term 1,4-dioxane exposure and recovery potential: N-kinetics and microbial dynamics. J. Hazard. Mater. 2021, 414, 125533. [Google Scholar] [CrossRef]
- Sani, K.; Kongjan, P.; Pakhathirathien, C.; Cheirsilp, B.; O-Thong, S.; Raketh, M.; Kana, R.; Jariyaboon, R. Effectiveness of using two-stage anaerobic digestion to recover bio-energy from high strength palm oil mill effluents with simultaneous treatment. J. Water Process Eng. 2021, 39, 101661. [Google Scholar] [CrossRef]
- Maharaja, P.; Boopathy, R.; Anushree, V.V.; Mahesh, M.; Swarnalatha, S.; Ravindran, B.; Chang, S.W.; Sekaran, G. Bio removal of proteins, lipids and mucopolysaccharides in tannery hyper saline wastewater using halophilic bacteria. J. Water Process Eng. 2020, 38, 101674. [Google Scholar] [CrossRef]
- Mirzapour-Kouhdasht, A.; Moosavi-Nasab, M.; Krishnaswamy, K.; Khalesi, M. Optimization of gelatin production from Barred mackerel by-products: Characterization and hydrolysis using native and commercial proteases. Food Hydrocoll. 2020, 108, 105970. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Li, J.; Kumar, S.; Awasthi, S.K.; Wang, Q.; Chen, H.; Wang, M.; Ren, X.; Zhang, Z. Effects of biochar amendment on bacterial and fungal diversity for co-composting of gelatin industry sludge mixed with organic fraction of municipal solid waste. Bioresour. Technol. 2017, 246, 214–223. [Google Scholar] [CrossRef]
- Osama, R.; Awad, H.M.; Ibrahim, M.G.; Tawfik, A. Mechanistic and economic assessment of polyester wastewater treatment via baffled duckweed pond. J. Water Process Eng. 2020, 35. [Google Scholar] [CrossRef]
- Meky, N.; Ibrahim, M.G.; Fujii, M.; Elreedy, A.; Tawfik, A. Integrated dark-photo fermentative hydrogen production from synthetic gelatinaceous wastewater via cost-effective hybrid reactor at ambient temperature. Energy Convers. Manag. 2020, 203, 112250. [Google Scholar] [CrossRef]
- Meky, N.; Fujii, M.; Ibrahim, M.G.; Tawfik, A. Biological hydrogen gas production from gelatinaceous wastewater via stand-Alone circular dark/photo baffled fermenter. Energy Procedia 2019, 157, 670–675. [Google Scholar] [CrossRef]
- Cárdenas, E.L.M.; Zapata-Zapata, A.D.; Kim, D. Modeling dark fermentation of coffee mucilage wastes for hydrogen production: Artificial neural network model vs. fuzzy logic model. Energies 2020, 13, 1663. [Google Scholar] [CrossRef] [Green Version]
- Aruwajoye, G.S.; Kassim, A.; Saha, A.K.; Gueguim Kana, E.B. Prospects for the improvement of bioethanol and biohydrogen production from mixed starch-based agricultural wastes. Energies 2020, 13, 6609. [Google Scholar] [CrossRef]
- Grabarczyk, R.; Urbaniec, K.; Wernik, J.; Trafczynski, M. Evaluation of the two-stage fermentative hydrogen production from sugar beet molasses. Energies 2019, 12, 4090. [Google Scholar] [CrossRef] [Green Version]
- Albini, E.; Pecorini, I.; Ferrara, G. Improvement of digestate stability using dark fermentation and anaerobic digestion processes. Energies 2019, 12, 3552. [Google Scholar] [CrossRef] [Green Version]
- Kotzé, J.P.; Thiel, P.G.; Toerien, D.F.; Hattingh, W.H.J.; Siebert, M.L. A biological and chemical study of several anaerobic digesters. Water Res. 1968, 2, 195–213. [Google Scholar] [CrossRef]
- Nisman, B. The Strickland reaction. Bacteriol. Rev. 1954, 18, 16–42. [Google Scholar] [CrossRef] [PubMed]
- Forrest, W.W.; Walker, D.J. The Generation and Utilization of Energy During Growth. In Advances in Microbial Physiology; Rose, A.H., Wilkinson, J.F.B.T.-A., Eds.; Elsevier: Amsterdam, The Netherlands, 1971; Volume 5, pp. 213–274. ISBN 0065-2911. [Google Scholar]
- Tepari, E.A.; Nakhla, G.; Idris, M.; Haroun, B.M.; Hafez, H. Stoichiometry of Anaerobic Protein Fermentation. Biochem. Eng. J. 2020, 158, 107564. [Google Scholar] [CrossRef]
- Breure, A.M.; van Andel, J.G.; Burger-Wiersma, T.; Guijt, J.; Verkuijlen, J. Hydrolysis and acidogenic fermentation of gelatin under anaerobic conditions in a laboratory scale upflow reactor. Appl. Microbiol. Biotechnol. 1985, 21, 50–54. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Yu, H. Mesophilic acidification of gelatinaceous wastewater. J. Biotechnol. 2002, 93, 99–108. [Google Scholar] [CrossRef]
- Harper, S.R.; Pohland, F.G. Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnol. Bioeng. 1986, 28, 585–602. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.K.; Zeikus, J.G. Bioconversion of Gelatin to Methane by a Coculture of Clostridium collagenovorans and Methanosarcina barkeri. Appl. Environ. Microbiol. 1989, 55, 366–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawfik, A.; Ali, M.; Danial, A.; Zhao, S.; Meng, F.; Nasr, M. 2-biofuels (H2 and CH4) production from anaerobic digestion of biscuits wastewater: Experimental study and techno-economic analysis. J. Water Process Eng. 2021, 39, 101736. [Google Scholar] [CrossRef]
- Ollivier, B.M.; Mah, R.A.; Ferguson, T.J.; Boone, D.R.; Garcia, J.L.; Robinson, R. Emendation of the Genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a Proteolytic Acetogen from a Methanogenic Enrichment. Int. J. Syst. Bacteriol. 1985, 35, 425–428. [Google Scholar] [CrossRef] [Green Version]
- Ollivier, B.; Lombardo, A.; Garcia, J.L. Isolation and characterization of a new thermophilic Methanosarcina strain (strain MP). Ann. Inst. Pasteur/Microbiol. 1984, 135, 187–198. [Google Scholar] [CrossRef]
- Ollivier, B.; Smiti, N.; Mah, R.; Garcia, J.-L. Thermophilic methanogenesis from gelatin by a mixed defined bacterial culture. Appl. Microbiol. Biotechnol. 1986, 24, 79–83. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Chui, H.K.; Li, Y.Y.; Chen, T. Performance and granule characteristics of UASB process treating wastewater with hydrolyzed proteins. Water Sci. Technol. 1994, 30, 55–63. [Google Scholar] [CrossRef]
- Elsamadony, M.; Tawfik, A. Dry anaerobic co-digestion of organic fraction of municipal waste with paperboard mill sludge and gelatin solid waste for enhancement of hydrogen production. Bioresour. Technol. 2015, 191, 157–165. [Google Scholar] [CrossRef]
- Meky, N.; Elreedy, A.; Ibrahim, M.G.; Fujii, M.; Tawfik, A. Intermittent versus sequential dark-photo fermentative hydrogen production as an alternative for bioenergy recovery from protein-rich effluents. Energy 2021, 217, 119326. [Google Scholar] [CrossRef]
- Breure, A.M.; Mooijman, K.A.; van Andel, J.G. Protein degradation in anaerobic digestion: Influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatin. Appl. Microbiol. Biotechnol. 1986, 24, 426–431. [Google Scholar] [CrossRef]
- Breure, A.M.; Beeftink, H.H.; Verkuijlen, J.; van Andel, J.G. Acidogenic fermentation of protein/carbohydrate mixtures by bacterial populations adapted to one of the substrates in anaerobic chemostat cultures. Appl. Microbiol. Biotechnol. 1986, 23, 245–249. [Google Scholar] [CrossRef]
- Jiang, Y.; McAdam, E.; Zhang, Y.; Heaven, S.; Banks, C.; Longhurst, P. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. J. Water Process Eng. 2019, 32, 100899. [Google Scholar] [CrossRef]
- Ali, M.; Elreedy, A.; Ibrahim, M.G.; Fujii, M.; Nakatani, K.; Tawfik, A. Regulating acidogenesis and methanogenesis for the separated bio-generation of hydrogen and methane from saline-to-hypersaline industrial wastewater. J. Environ. Manag. 2019, 250, 109546. [Google Scholar] [CrossRef]
- Elreedy, A.; Tawfik, A.; Kubota, K.; Shimada, Y.; Harada, H. Hythane (H2 + CH4) production from petrochemical wastewater containing mono-ethylene glycol via stepped anaerobic baffled reactor. Int. Biodeterior. Biodegrad. 2015, 105, 252–261. [Google Scholar] [CrossRef]
- Tawfik, A.; Hassan, G.K.; Yu, Z.; Salah, H.A.; Hassan, M.; Meng, F. Dynamic approach for mono- and di-fermentation of black liquor and livestock wastewater for 2-bio-(H2&CH4) production. Biomass Bioenergy 2021, 145, 105947. [Google Scholar] [CrossRef]
- Mahmoud, M.; Elreedy, A.; Pascal, P.; Sophie, L.R.; Tawfik, A. Hythane (H2 and CH4) production from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals via up-flow anaerobic self-separation gases reactor. Energy Convers. Manag. 2017, 152, 342–353. [Google Scholar] [CrossRef]
- Elsamadony, M.; Mostafa, A.; Fujii, M.; Tawfik, A.; Pant, D. Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. Water Res. 2021, 190, 116732. [Google Scholar] [CrossRef] [PubMed]
- Wicher, E.; Seifert, K.; Zagrodnik, R.; Pietrzyk, B.; Laniecki, M. Hydrogen gas production from distillery wastewater by dark fermentation. Int. J. Hydrogen Energy 2013, 38, 7767–7773. [Google Scholar] [CrossRef]
- Elreedy, A.; Fujii, M.; Tawfik, A. Factors affecting on hythane bio-generation via anaerobic digestion of mono-ethylene glycol contaminated wastewater: Inoculum-to-substrate ratio, nitrogen-to-phosphorus ratio and pH. Bioresour. Technol. 2017, 223, 10–19. [Google Scholar] [CrossRef]
- Winter, J.U.; Wolfe, R.S. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol. 1980, 124, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.K.; Zeikus, J.G. Taxonomic Distinction of Two New Protein Specific, Hydrolytic Anaerobes: Isolation and Characterization of Clostridium proteolyticum sp. nov. and Clostridium collagenovorans sp. nov. Syst. Appl. Microbiol. 1988, 10, 134–141. [Google Scholar] [CrossRef]
- Regueira, A.; Bevilacqua, R.; Lema, J.M.; Carballa, M.; Mauricio-Iglesias, M. A metabolic model for targeted volatile fatty acids production by cofermentation of carbohydrates and proteins. Bioresour. Technol. 2020, 298, 122535. [Google Scholar] [CrossRef] [PubMed]
- den Boer, E.; den Boer, J.; Hakalehto, E. Volatile fatty acids production from separately collected municipal biowaste through mixed cultures fermentation. J. Water Process Eng. 2020, 38, 101582. [Google Scholar] [CrossRef]
- Nasr, M.; Tawfik, A.; Awad, H.M.; Galal, A.; El-Qelish, M.; Abdul Qyyum, M.; Mumtaz Ali Khan, M.; Rehan, M.; Nizami, A.-S.; Lee, M. Dual production of hydrogen and biochar from industrial effluent containing phenolic compounds. Fuel 2021, 301, 121087. [Google Scholar] [CrossRef]
- Mostafa, A.; Tolba, A.; Gar Alalm, M.; Fujii, M.; Afify, H.; Elsamadony, M. Application of magnetic multi-wall carbon nanotube composite into fermentative treatment process of ultrasonicated waste activated sludge. Bioresour. Technol. 2020, 306. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, A.; Nasr, M.; Galal, A.; El-qelish, M.; Yu, Z.; Hassan, M.A.; Salah, H.A.; Hasanin, M.S.; Meng, F.; Bokhari, A.; et al. Fermentation-based nanoparticle systems for sustainable conversion of black-liquor into biohydrogen. J. Clean. Prod. 2021, 309, 127349. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; He, X.; Zheng, L.; Cheng, S.; Li, Z. Diminished inhibitory impact of ZnO nanoparticles on anaerobic fermentation by the presence of TiO2 nanoparticles: Phenomenon and mechanism. Sci. Total Environ. 2019, 647, 313–322. [Google Scholar] [CrossRef]
- Xiang, Y.; Yang, Z.; Zhang, Y.; Xu, R.; Zheng, Y.; Hu, J.; Li, X.; Jia, M.; Xiong, W.; Cao, J. Influence of nanoscale zero-valent iron and magnetite nanoparticles on anaerobic digestion performance and macrolide, aminoglycoside, β-lactam resistance genes reduction. Bioresour. Technol. 2019, 294, 122139. [Google Scholar] [CrossRef]
- He, C.S.; He, P.P.; Yang, H.Y.; Li, L.L.; Lin, Y.; Mu, Y.; Yu, H.Q. Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge: From macroscopic to microcosmic investigation. Water Res. 2017, 127, 32–40. [Google Scholar] [CrossRef]
- Farghaly, A.; Tawfik, A. Simultaneous Hydrogen and Methane Production Through Multi-Phase Anaerobic Digestion of Paperboard Mill Wastewater Under Different Operating Conditions. Appl. Biochem. Biotechnol. 2017, 181, 142–156. [Google Scholar] [CrossRef]
- Ali, M.; Elreedy, A.; Ibrahim, M.G.; Fujii, M.; Tawfik, A. Hydrogen and methane bio-production and microbial community dynamics in a multi-phase anaerobic reactor treating saline industrial wastewater. Energy Convers. Manag. 2019, 186, 1–14. [Google Scholar] [CrossRef]
- Yu, H.Q.; Fang, H.H.P. Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: Influence of pH and temperature. Water Res. 2003, 37, 55–66. [Google Scholar] [CrossRef]
- Tawfik, A.; El-Bery, H.; Kumari, S.; Bux, F. Use of mixed culture bacteria for photofermentive hydrogen of dark fermentation effluent. Bioresour. Technol. 2014, 168. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, A.; El-Bery, H.; Elsamadony, M.; Kumari, S.; Bux, F. Upgrading continuous H2 gas recovery from rice straw hydrolysate via fermentation process amended with magnetite nanoparticles. Int. J. Energy Res. 2019, 43. [Google Scholar] [CrossRef]
- El-Bery, H.; Tawfik, A.; Kumari, S.; Bux, F. Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor. Environ. Technol. 2013, 34. [Google Scholar] [CrossRef]
- Ali, M.; Danial, A.; Tawfik, A. Self-dark fermentation of lipids rich wastewater for 2-biofuels (H2 and Et-OH) production. Process Saf. Environ. Prot. 2017, 109, 257–267. [Google Scholar] [CrossRef]
- Nasr, M.; Tawfik, A.; Suzuki, M.; Ookawara, S. Mathematical modeling of bio-hydrogen production from starch wastewater via up-flow anaerobic staged reactor. Desalin. Water Treat. 2015, 54. [Google Scholar] [CrossRef]
- Farghaly, A.; Roux, S.L.; Peu, P.; Dabert, P.; Tawfik, A. Effect of starvation period on microbial community producing hydrogen from paperboard mill wastewater using anaerobic baffled reactor. Environ. Technol. 2019, 40. [Google Scholar] [CrossRef] [PubMed]
- Farghaly, A.; Tawfik, A.; Danial, A. Inoculation of paperboard mill sludge versus mixed culture bacteria for hydrogen production from paperboard mill wastewater. Environ. Sci. Pollut. Res. 2016, 23. [Google Scholar] [CrossRef]
- Elsharkawy, K.; Gar Alalm, M.; Fujii, M.; Afify, H.; Tawfik, A.; Elsamadony, M. Paperboard mill wastewater treatment via combined dark and LED-mediated fermentation in the absence of external chemical addition. Bioresour. Technol. 2020, 295. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.C.; Stablein, M.J.; Tommaso, G. Cultivation of Chlorella vulgaris in anaerobically digested gelatin industry wastewater. Water Supply 2020, 1–13. [Google Scholar] [CrossRef]
- Ali, M.; Farghaly, A.; Le Roux, S.; Peu, P.; Dabert, P.; Tawfik, A. Potential of using non-inoculated self-aerated immobilized biomass reactor for post-treatment of upflow anaerobic staged reactor treating high strength industrial wastewater. J. Chem. Technol. Biotechnol. 2017, 92, 1065–1075. [Google Scholar] [CrossRef]
- Bakr, M.H.; Nasr, M.; Ashmawy, M.; Tawfik, A. Predictive performance of auto-aerated immobilized biomass reactor treating anaerobic effluent of cardboard wastewater enriched with bronopol (2-bromo-2-nitropropan-1,3-diol) via artificial neural network. Environ. Technol. Innov. 2021, 21, 101327. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ismail, S.; Tawfik, A. Post-treatment of anaerobic effluent containing 1,4-dioxane and heavy metals via auto-aerated down-flow hanging luffa (ADHL) system. Process Saf. Environ. Prot. 2018, 117, 22–32. [Google Scholar] [CrossRef]
- Ismail, S.; Nasr, M.; Abdelrazek, E.; Awad, H.M.; Zhaof, S.; Meng, F.; Tawfik, A. Techno-economic feasibility of energy-saving self-aerated sponge tower combined with up-flow anaerobic sludge blanket reactor for treatment of hazardous landfill leachate. J. Water Process Eng. 2020, 37, 101415. [Google Scholar] [CrossRef]
1. Conversion of individual and pairs amino acids into volatile fatty acids | |
(1) | |
(2) | |
2. Conversion of individual and pairs amino acids into volatile fatty acids | |
(3) | |
3. Oxidative deamination | |
(4) | |
(5) | |
(6) | |
4. Reductive deamination | |
(7) | |
Sum | |
(8) | |
(9) | |
(10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawfik, A.; Ni, S.-Q.; Awad, H.M.; Ismail, S.; Tyagi, V.K.; Khan, M.S.; Qyyum, M.A.; Lee, M. Recent Approaches for the Production of High Value-Added Biofuels from Gelatinous Wastewater. Energies 2021, 14, 4936. https://doi.org/10.3390/en14164936
Tawfik A, Ni S-Q, Awad HM, Ismail S, Tyagi VK, Khan MS, Qyyum MA, Lee M. Recent Approaches for the Production of High Value-Added Biofuels from Gelatinous Wastewater. Energies. 2021; 14(16):4936. https://doi.org/10.3390/en14164936
Chicago/Turabian StyleTawfik, Ahmed, Shou-Qing Ni, Hanem. M. Awad, Sherif Ismail, Vinay Kumar Tyagi, Mohd Shariq Khan, Muhammad Abdul Qyyum, and Moonyong Lee. 2021. "Recent Approaches for the Production of High Value-Added Biofuels from Gelatinous Wastewater" Energies 14, no. 16: 4936. https://doi.org/10.3390/en14164936
APA StyleTawfik, A., Ni, S. -Q., Awad, H. M., Ismail, S., Tyagi, V. K., Khan, M. S., Qyyum, M. A., & Lee, M. (2021). Recent Approaches for the Production of High Value-Added Biofuels from Gelatinous Wastewater. Energies, 14(16), 4936. https://doi.org/10.3390/en14164936