Development of a Framework for Activation of Aggregator Led Flexibility
Abstract
:1. Introduction
2. Aggregator Based Framework
2.1. Framework Structure
2.2. Use Cases
2.2.1. Dynamic Pricing
2.2.2. Peak Shaving
2.2.3. CO2 Minimization
2.2.4. PV Power Smoothing
3. Modelling Approaches
3.1. AHU Fan Model
3.2. Thermal Systems Model
3.3. Photovoltaic (PV) Model
3.4. Battery Model
4. Optimization
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. State of the Union: Questions & Answers on the 2030 Climate Target Plan; European Commission Press Corner: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. A Clean Planet for all: A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy, 28.11.2018 COM (2018) 773 Final; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Jensen, S.Ø.; Marszal, A.J.; Lollini, R.; Pasut, W.; Knotzer, A.; Engelmann, P.; Stafford, A.; Reynders, G. IEA EBC Annex 67 Energy Flexible Buildings. Energy Build. 2017, 155, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Lew, D.; Stenclik, D.; Bartlett, D.; Groom, A.; Jorgensen, P.; O’Sullivan, J.; Quint, R.; Rew, B.; Rockwell, B.; Sharma, S. Secrets of Successful Integration: Operating experience with high levels of variable, inverter-based generation. IEEE Power Energy Mag. 2019, 17, 24–34. [Google Scholar] [CrossRef]
- Araya Cardoso, A.; Torriti, J.; Lorincz, M. Making demand side response happen: A review of barriers in commercial and public organisations. Energy Res. Soc. Sci. 2020, 64, 101443. [Google Scholar] [CrossRef]
- Matevosyan, J.; Vital, V.; O’Sullivan, J.; Quint, R.; Badrzadeh, B.; Prevost, T.; Quitmann, E.; Ramasubramanian, D.; Urdal, H.; Achilles, S.; et al. Grid Forming Inverters: Are They the Key for High Renewable Penetration? IEEE Power Energy Mag. 2019, 17, 89–98. [Google Scholar] [CrossRef]
- Rasku, T.; Kiviluoma, A. Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System. Energies 2019, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Østergaard Jensen, S.; Parker, J.; Marszal-Pomianowska, A. (Eds.) Principles of Energy Flexible Buildings. Deliverable, International Energy Agency Energy in Buildings & Communities Annex 67 Energy Flexible Buildings. 2019. Available online: https://www.annex67.org/media/1918/principles-of-energy-flexible-buildings.pdf (accessed on 17 August 2020).
- Foggia, G.; Neto, A.; Michiorri, A.; Bocquet, A. Coordinated Control of Dispersed Battery Energy Storage Systems for Services to Network Operators. In Proceedings of the 23rd International Conference on Electricity Distribution (CIRED) 2015, Lyon, France, 15–18 June 2015. [Google Scholar]
- Eirgrid. The DS3 Programme: Delivering a Secure, Sustainable Electricity System. 2018. Available online: http://www.eirgridgroup.com/how-the-grid-works/ds3-programme (accessed on 12 October 2018).
- Orths, A.; Anderson, C.L.; Brown, T.; Mulhern, J.; Pudjianto, D.; Ernst, B.; O’Malley, M.; McCalley, J.; Strbac, G. Flexibility from Energy Systems Integration. IEEE Power Energy Mag. 2019, 17, 67–78. [Google Scholar] [CrossRef]
- Aghaei, J.; Alizadeh, M. Demand response in smart electricity grids equipped with renewable energy sources: A review. Renew. Sustain. Energy Rev. 2013, 18, 64–72. [Google Scholar] [CrossRef]
- European Commission. LCE-01-2016-2017: Next Generation Innovative Technologies Enabling Smart Grids, Storage and Energy System Integration with Increasing Share of Renewables: Distribution Network, Horizon 2020 Work Programme 2016–2017: 10. ‘Secure, Clean and Efficient Energy’; European Commission Decision C: Brussels, Belgium, 2016. [Google Scholar]
- Ma, Z.; Nørregaard Jørgensen, B.; Parker, J. (Eds.) Stakeholders’ Perspectives on Energy Flexible Buildings, Deliverable, International Energy Agency Energy in Buildings and Communities Annex 67 Energy Flexible Buildings. 2019. Available online: https://www.annex67.org/media/1911/stakeholders-perspectives.pdf (accessed on 13 August 2020).
- Knotzer, A.; Roberta, P.; Østergaard Jensen, S. Characterization of Energy Flexibility in Buildings, Deliverable, International Energy Agency Energy in Buildings and Communities Annex 67 Energy Flexible Buildings. 2019. Available online: https://www.annex67.org/media/1919/characterization-of-energy-flexibility-in-buildings.pdf (accessed on 13 August 2020).
- O’Connell, S.; Reynders, G.; Seri, F.; Sterling, R.; Keane, M.M. A standardised flexibility assessment methodology for demand response. Int. J. Build. Pathol. Adapt. 2020, 38, 20–37. [Google Scholar] [CrossRef]
- Riverso, S.; Torchio, M.; O’Connell, S.; Sobonski, P. Managing Flexible Grid Resources. U.S. Patent 62/718,048, 13 August 2018. [Google Scholar]
- European Commission. LC-SC3-B4E-3-2020: Upgrading Smartness of Existing Buildings through Innovations for Legacy Equipment, Horizon 2020 Work Programme 2018–2020, 10. Secure, Clean and Efficient Energy; European Commission Decision C: Brussels, Belgium, 2020. [Google Scholar]
- Muzumdar, A.; Modi, C.; Madhu, G.M.; Vyjayanthi, C. A trustworthy and incentivized smart grid energy trading framework using distributed ledger and smart contracts. J. Netw. Comput. Appl. 2021, 183–184, 103074. [Google Scholar] [CrossRef]
- Vieira, G.; Zhang, J. Peer-to-peer energy trading in a microgrid leveraged by smart contracts. Renew. Sustain. Energy Rev. 2021, 143, 110900. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, D.; Lou, R.; Wang, Q. Intelligent edge computing based on machine learning for smart city. Future Gener. Comput. Syst. 2021, 115, 90–99. [Google Scholar] [CrossRef]
- European Commission. Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on common rules for the internal market for electricity and amending Directive 2012/27/EU (recast). OJEU 2019, 62, 125–199. Available online: http://data.europa.eu/eli/dir/2019/944/oj (accessed on 10 August 2021).
- Hu, M.; Xiao, F.; Bagterp Jørgensen, J.; Wang, S. Frequency control of air conditioners in response to real-time dynamic electricity prices in smart grids. Appl. Energy 2019, 242, 92–106. [Google Scholar] [CrossRef]
- Burns, D.; Bialecki, T.; Gil, G.; Kathan, D.; Lee, M.P.; Peirovi, S.; Puram, R. 2020 Assessment of Demand Response and Advanced Metering Pursuant to Energy Policy Act of 2005 Section 1252(e)(3). Staff Report; Federal Energy Regulatory Commission (FERC): Washington, DC, USA, 2020.
- Li, H.; An, Q.; Yu, B.; Zhao, J.; Cheng, L.; Wang, Y. Strategy analysis of demand side management on distributed heating driven by wind power. Energy Procedia 2017, 105, 2207–2213. [Google Scholar] [CrossRef]
- Péan, T.; Salom, J.; Ortiz, J. Environmental and Economic Impact of Demand Response Strategies for Energy Flexible Buildings. In Proceedings of the BSO 2018: 4th Building Simulation and Optimization Conference, Cambridge, UK, 11–12 September 2018. [Google Scholar]
- Stroe, D.; Zaharof, A.; Iov, F. Power and Energy Management with Battery Storage for a Hybrid Residential PV-Wind System—A Case Study for Denmark. Energy Procedia 2018, 155, 464–477. [Google Scholar] [CrossRef]
- Ashrae, A.N.S.I. Standard 55-2013 Thermal Environmental Conditions for Human Occupancy, American Society of Heating Refrigerating and Air-Conditioning Engineers; American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2013. [Google Scholar]
- Carlucci, S.; Bai, L.; de Dear, R.; Yang, L. Review of adaptive thermal comfort models in built environmental regulatory documents. Build. Environ. 2018, 137, 73–89. [Google Scholar] [CrossRef] [Green Version]
- CIBSE. GVB2/16 CIBSE Guide B2: Ventilation and Ductwork 2016; Chartered Institute of Building Services Engineers: London, UK, 2016. [Google Scholar]
- Roels, S.; Bacher, P.; Bauwens, G.; Madsen, H.; Jiménez, M.J. Characterising the actual thermal performance of buildings: Current results of common exercises performed in the framework of the IEA EBC Annex 58-project. Energy Procedia 2015, 78, 3282–3287. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Tian, Z.; Yakai, L.; Zhao, H. Flexible dispatch of a building energy system using building thermal storage & battery energy Storage. Appl. Energy 2019, 243, 274–287. [Google Scholar] [CrossRef]
- Zeng, A.; Liu, S.; Yu, Y. Comparative study of data driven methods in building electricity use prediction. Energy Build. 2019, 194, 289–300. [Google Scholar] [CrossRef]
- Yildiz, B.; Bilbao, J.I.; Sproul, A.B. A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew. Sustain. Energy Rev. 2017, 73, 1104–1122. [Google Scholar] [CrossRef]
- Bourdeau, M.; Zhai, X.; Nefzaoui, E.; Guo, X.; Chatellier, P. Modelling and forecasting building energy consumption: A review of data-driven techniques. Sustain. Cities Soc. 2019, 48, 101533. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H.; Huang, Y. Short-Term Energy Prediction for District-Level Load Management Using Machine Learning Based Approaches. Energy Procedia 2019, 158, 3331–3338. [Google Scholar] [CrossRef]
- Jung, W.; Jazizadeh, F. Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, & energy-efficiency dimensions. Appl. Energy 2019, 239, 1471–1508. [Google Scholar] [CrossRef]
- Pantazaras, A.; Lee, S.; Santamouris, M.; Yang, J. Predicting the CO2 levels in buildings using deterministic and identified models. Energy Build. 2016, 127, 774–785. [Google Scholar] [CrossRef]
- Paudel, S.; Elmitri, M.; Couturier, S.; Nguyen, P.; Kamphuis, R.; Lacarrière, B.; Le Corre, O. A relevant data selection method for energy consumption prediction of low energy building based on SVM. Energy Build. 2017, 138, 240–256. [Google Scholar] [CrossRef]
- Coakley, D.; Raftery, P.; Keane, M.M. A review of methods to match building energy simulation models to measured data. Renew. Sustain. Energy Rev. 2014, 37, 123–141. [Google Scholar] [CrossRef] [Green Version]
- Wetter, M. Co-simulation of building energy and control systems with the Building Controls Virtual Test Bed. J. Build. Perform. Simul. 2011, 4, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Wetter, M.; Fuchs, M.; Grozman, P.; Helsen, L.; Jorissen, F.; Lauster, M.; Muller, D.; Nytsch-Geusen, C.; Picard, D.; Sahlin, P.; et al. International Energy Agency Energy in Buildings and Communities Annex 60 Modelica Library—An International Collaboration to Develop a Free Open-Source Model Library for Buildings and Community Energy Systems. In Proceedings of the 14th IBPSA Conference, Hyderabad, India, 7–9 December 2015. [Google Scholar]
- De Coninck, R.; Magnusson, F.; Åkesson, J.; Helsen, L. Toolbox for development and validation of grey-box building models for forecasting and control. J. Build. Perform. Simul. 2016, 9, 288–303. [Google Scholar] [CrossRef] [Green Version]
- Halimov, A.; Lauster, M.; Müller, D. Validation and integration of a latent heat storage model into building envelopes of a high-order building model for Modelica library AixLib. Energy Build. 2019, 202, 109336. [Google Scholar] [CrossRef]
- Bacher, P.; Madsen, H. Identifying suitable models for the heat dynamics of buildings. Energy Build. 2011, 43, 1511–1522. [Google Scholar] [CrossRef] [Green Version]
- Reynders, G. Quantifying the Impact of Building Design on the Potential of Structural Storage for Active Demand Response in Residential Buildings. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2015. [Google Scholar]
- Zhou, W.; Yang, H.; Fang, Z. A novel model for photovoltaic array performance prediction. Appl. Energy 2007, 84, 1187–1198. [Google Scholar] [CrossRef]
- Atlas Global Weather Database. Athenium Analytics. Available online: https://www.athenium.com/products/atlas/ (accessed on 4 March 2020).
- Barbato, A.; Capone, A. Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey. Energies 2014, 7, 5787–5824. [Google Scholar] [CrossRef]
- Ito, H.; Hanai, K.; Saito, N.; Kojima, T.; Yoshiyama, S.; Fukui, S. Electricity System Reform Requirements: A Novel Implementation Approach to Grid Management and Control. IEEE Power Energy Mag. 2018, 16, 46–56. [Google Scholar] [CrossRef]
- El-Baz, W.; Tzscheutschler, P.; Wagner, U. Day-ahead probabilistic PV generation forecast for buildings energy management systems. Sol. Energy 2018, 171, 478–490. [Google Scholar] [CrossRef]
- Honsberg, C.; Bowden, S. Solar Radiation on a Tilted Surface. 2019. Available online: https://www.pveducation.org/pvcdrom/properties-of-sunlight/solar-radiation-on-a-tilted-surface (accessed on 2 November 2019).
- Solarworld. Sunmodule SW 250 Mono Black/Version 2.0 and 2.5 Frame; Tech. Spec.: Bonn, Germany, 2012. [Google Scholar]
- Berrueta, A.; Urtasun, A.; Ursua, A.; Sanchis, P. A comprehensive model for li-ion batteries: From the physical principles to an electrical model. Energy 2018, 144, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Sakti, A.; Gallagher, K.G.; Sepulveda, N.; Uckun, C.; Vergara, C.; de Sisternes, F.J.; Dees, D.W.; Botterud, A. Enhanced representations of lithium-ion batteries in power systems models and their effect on the valuation of energy arbitrage applications. J. Power Sources 2017, 342, 279–291. [Google Scholar] [CrossRef]
- Gonzalez-Castellanos, A.; Pozo, D.; Bischi, A. Detailed Li-ion battery characterization model for economic operation. Int. J. Electr. Power Energy Syst. 2020, 116, 105561. [Google Scholar] [CrossRef]
- White, C.; Thompson, B.; Swan, L. Repurposed electric vehicle battery performance in second-life electricity grid frequency regulation service. J. Energy Storage 2018, 28, 101278. [Google Scholar] [CrossRef]
- Siebert, N.; Ammari, S.; Cao, X.; Delaplagne, T.; Mamadou, K.; Gaci, O.; Lagorse, J.; Bertone, Y. Scheduling Demand Response and Smart Battery Flexibility in a Market Environment: Results from the Reflexe Demonstrator Project; IEEE PowerTech: Eindhoven, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Ottesen, S.; Tomasgard, A. A stochastic model for scheduling energy flexibility in buildings. Energy 2015, 88, 364–376. [Google Scholar] [CrossRef]
- Grønborg Junker, R.; Ghasem Azar, A.; Amaral Lopes, R.; Byskov Lindberg, K.; Reynders, G.; Relan, R.; Madsen, H. Characterizing the energy flexibility of buildings and districts. Appl. Energy 2018, 225, 175–182. [Google Scholar] [CrossRef]
- Gurobi Optimizer Reference Manual, Version 9.1, Gurobi Optimization LLC. 2021. Available online: https://www.gurobi.com/documentation/9.1/refman/index.html (accessed on 28 July 2021).
- IBM CPLEX Optimizer, IBM. 2021. Available online: https://www.ibm.com/analytics/cplex-optimizer (accessed on 28 July 2021).
- Solving Constraint Integer Programs Manual, Version 7.0.3, SCIP Doxygen Documentation. 2021. Available online: https://www.scipopt.org/doc/html/ (accessed on 28 July 2021).
- Liu, O.; Li, X.; Gao, L. A Novel MILP Model Based on the Topology of a Network Graph for Process Planning in an Intelligent Manufacturing System. Engineering 2021, 7, 807–817. [Google Scholar] [CrossRef]
- Kong, L.; Ji, M.; Gao, Z. Joint optimization of container slot planning and truck scheduling for tandem quay cranes. Eur. J. Oper. Res. 2021, 293, 149–166. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connell, S.; Keane, M.M. Development of a Framework for Activation of Aggregator Led Flexibility. Energies 2021, 14, 4950. https://doi.org/10.3390/en14164950
O’Connell S, Keane MM. Development of a Framework for Activation of Aggregator Led Flexibility. Energies. 2021; 14(16):4950. https://doi.org/10.3390/en14164950
Chicago/Turabian StyleO’Connell, Sarah, and Marcus Martin Keane. 2021. "Development of a Framework for Activation of Aggregator Led Flexibility" Energies 14, no. 16: 4950. https://doi.org/10.3390/en14164950
APA StyleO’Connell, S., & Keane, M. M. (2021). Development of a Framework for Activation of Aggregator Led Flexibility. Energies, 14(16), 4950. https://doi.org/10.3390/en14164950