Spatially Explicit Assessment of the Feasibility of Sustainable Aviation Fuels Production in Brazil: Results of Three Case Studies
Abstract
:1. Introduction
2. Routes for SAF Production
3. Methodology and Assumptions
3.1. Methodology
3.2. Assessing Biomass Availability
3.3. Estimating Transportation Costs
3.4. Defining Biomass Production Sites
3.5. Biomass Supply Curves
3.6. Industrial Units and Assumptions
3.7. Limiting Production to Degraded Pastures
4. Results and Discussion
4.1. Supply of Eucalyptus
4.2. Supply of Soil Oil
4.3. Production and Supply of Anhydrous Ethanol
4.4. MSP of SAF in the Base Cases
4.5. Exploring the Scale Effects on the SAF MSP
4.6. Comparing Results
4.7. Producing on Degraded Pasturelands
4.8. Identifying Regions with Good Potential
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chum, H.; Faaij, A.; Moreira, J.; Berndes, G.; Dhamija, P.; Dong, H.; Gabrielle, B.; Goss Eng, A.; Lucht, W.; Mapak., M.; et al. Bioenergy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Eickemeier, P., Matschoss, P., Hansen, G., Kadner, S., Schlömer, S., Zwickel, T., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 209–332. [Google Scholar]
- IEA—International Energy Agency. Energy Technology Perspectives 2020; IEA: Paris, France, 2020; 397p. [Google Scholar]
- Strapasson, A.; Woods, J.; Chum, H.; Kalas, N.; Shah, N.; Rosillo-Calle, F. On the global limits of bioenergy and land use for climate change mitigation. GCB Bioenergy 2017, 9, 1721–1735. [Google Scholar] [CrossRef]
- EESI—Environment and Energy Study Institute. The Growth in Greenhouse Gas Emissions from Commercial Aviation. Available online: www.eesi.org/papers (accessed on 9 March 2021).
- ICAO—International Civil Aviation Organization. Trends in Emissions that Affect Climate Change. Available online: www.icao.int/environmental-protection/pages/climatechange_trends.aspx (accessed on 9 March 2021).
- IATA—Climate Change. IATA—International Air Transport Association. Available online: www.iata.org/en/programs/environment/climate-change (accessed on 9 March 2021).
- ICAO—International Civil Aviation Organization. CORSIA Sustainability Criteria for CORSIA Eligible Fuels. 2019. Available online: www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-Eligible-Fuels.aspx (accessed on 9 March 2021).
- Walter, A.; Seabra, J.; Rocha, J.; Guarenghi, M.; Vieira, N.; Damame, D.; Santos, J.L. Spatially explicit assessment of the suitable conditions for the sustainable production of aviation fuels in Brazil. Land 2021, 10, 705. [Google Scholar] [CrossRef]
- Chuck, C. Biofuels for Aviation: Feedstocks, Technology and Implementation, 1st ed.; Elsevier: Cambridge, MA, USA, 2016. [Google Scholar]
- ICAO. Sustainable Aviation Fuels Guide, 2nd ed.; Transforming Global Aviation Collection; ICAO: Montreal, QC, Canada, 2018. [Google Scholar]
- ASTM D7566-20c, Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons; ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Wang, W.C.; Tao, L.; Markham, J.; Zhang, Y.; Tan, E.; Batan, L.; Warner, E.; Biddy, M. Review of Biojet Fuel Conversion Technologies; Technical Report No. NREL/TP-5100-66291; National Renewable Energy Laboratory: Golden, CO, USA, 2016. [Google Scholar]
- Van Dyk, S.; Su, J.; McMillan, J.D.; Saddler, J.N. ‘Drop-in’ Biofuels: The Key Role that Co-Processing Will Play in Its Production; IEA Bioenergy Task 39: Paris, France, 2019; ISBN 9781910154618. [Google Scholar]
- Van Dyk, S.; Saddler, J. Progress in Commercialization of Biojet/Sustainable Aviation Fuels (SAF): Technologies, Potential and Challenges; IEA Bioenergy Task 39: Paris, France, 2021. [Google Scholar]
- Prussi, M.; O’Connell, A.; Lonza, L. Analysis of current aviation biofuel technical production potential in EU28. Biomass Bioenergy 2019, 130, 105371. [Google Scholar] [CrossRef]
- De Jong, S.; Antonissen, K.; Hoefnagels, R.; Lonza, L.; Wang, M.; Faaij, A.; Junginger, M. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol. Biofuels 2017, 10, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haq, Z.; Kostova, B. Biofuels in Defense and Aviation. Available online: https://www.energy.gov/sites/default/files/2017/03/f34/day_3_plenary_haq_aviation_overview.pdf (accessed on 10 March 2021).
- Manzatto, C.V.; Assad, E.D.; Bacca, J.F.M.; Zaroni, M.J.; Pereira, S.E.M. Zoneamento Agroecológico da Cana-de-Açúcar: Expandir a Produção, Preservar a Vida, Garantir o Future; EMBRAPA Solos: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Simões, M.G.; Oliveira, S.R.M.; Peçanha, R.; Ferraz, D.; Santos, H.G.; Manzatto, C.V. Democratization of information on Brazilian soils: Geoportal and soil database accessible via web. Cad. Ciência Technol. 2015, 32, 55–69. [Google Scholar]
- Agrianual Databe on Agribusiness. Available online: http://www.agrianual.com.br/ (accessed on 12 March 2020).
- Map and Data Platform. MapBiomas. Available online: https://mapbiomas.org/ (accessed on 8 February 2020).
- ANP—Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. Statistic Database. Available online: http://www.anp.gov.br/dados-estatisticos (accessed on 12 April 2021).
- Forkenbrock, D.J. External Costs of Truck and Rail Freight Transportation; The University of Iowa Public Policy Center: Iowa City, IA, USA, 1998. [Google Scholar]
- Vassallo, M.D. Análise de Impactos Econômicos Setoriais e Regionais Decorrentes de Investimentos em Infraestrutura de Transportes. Ph.D. Thesis, Faculdade de Economia, Administração e Contabilidade, Universidade de São Paulo, São Paulo, Brazil, 2015. [Google Scholar]
- De Jong, S.; Hoefnagels, R.; Faaij, A.; Slade, R.; Mawhood, R.; Junginger, M. The feasibility of short-term production strategies for renewable jet fuels—A comprehensive techno-economic comparison. Biofuels Bioprod. Biorefin. 2015, 9, 778–800. [Google Scholar] [CrossRef]
- Towler, G.; Sinnott, R. Chemical Engineering Design: Principles, Practice, and Economics of Plant and Process Design, 2nd ed.; Butterworth-Heinemann: Waltham, MA, USA, 2013. [Google Scholar]
- Jin, H.; Larson, E.D.; Celik, F.E. Performance and cost analysis of future, commercially mature gasification-based electric power generation from switchgrass. Biofuels Bioprod. Biorefin. 2009, 3, 142–173. [Google Scholar] [CrossRef]
- Mandarino, J.M.G.; Hirakuri, M.H.; Roessing, A.C. Tecnologia para Produção do Óleo de Soja: Descrição das Etapas, Equipamentos, Produtos e Subprodutos; Embrapa: Londrina, Brazil, 2015. [Google Scholar]
- Associação Brasileira das Indústrias Óleos Vegetais. Statistics Database. 2019. Available online: https://abiove.org.br/ (accessed on 20 March 2020).
- Milanez, A.Y.; Nyko, D.; Valente, M.S.; Xavier, C.E.O.; Kulay, L.A.; Donke, A.C.G.; Matsuura, M.I.S.F.; Ramos, N.P.; Morandi, M.A.B.; Bonomi, A.M.F.L.J.; et al. A Produção de Etanol Pela Integração do Milho-Safrinha às Usinas de Cana-de-Açúcar: Avaliação Ambiental, Econômica e Sugestões de Política; BNDES: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Wiegmann, K.; Hennenberg, K.; Fritsche, U.R. Degraded Land and Sustainable Bioenergy Feedstock Production. In Joint International Workshop on High Nature Value Criteria and Potential for Sustainable Use of Degraded Lands; Öko-Institut: Darmstadt, Germany, 2008. [Google Scholar]
- Sumfleth, B.; Majer, S.; Thrän, D. Recent developments in low iLUC policies and certification in the EU biobased economy. Sustainability 2020, 12, 8147. [Google Scholar] [CrossRef]
- LAPIG—Laboratório de Processamento de Imagens e Geoprocessamento. Atlas das Pastagens Brasileiras. Available online: https://pastagem.org/map (accessed on 20 September 2020).
- Dias-Filho, M.B. Degradação de Pastagens: Processos, Causas e Estratégias; Embrapa Amazônia Oriental: Belém, Brazil, 2005. [Google Scholar]
- Dias Filho, M.B. Diagnóstico das Pastagens no Brasil; Embrapa Amazônia Oriental: Belém, Brazil, 2014; p. 22. [Google Scholar]
- Pereira, O.J.R.; Ferreira, L.G.; Pinto, F.; Baumgarten, L. Assessing pasture degradation in the Brazilian Cerrado based on the analysis of MODIS NDVI time-series. Remote Sens. 2018, 10, 1761. [Google Scholar] [CrossRef] [Green Version]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Produção da Extração Vegetal e da Silvicultura. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=resultados (accessed on 30 May 2020).
- Novacana. Private Database on Sugarcane and Ethanol Production. Available online: https://www.novacana.com/ (accessed on 1 June 2021).
- CEPEA—Centro de Estudos Avançados em Economia Agropecuária. Available online: https://cepea.esalq.usp.br/br/indicador/etanol.aspx (accessed on 20 November 2020).
- Bann, S.J.; Malina, R.; Staples, M.D.; Suresh, P.; Pearlson, M.; Tyner, W.E.; Hileman, J.I.; Barrett, S. The costs of production of alternative jet fuel: A harmonized stochastic assessment. Bioresour. Technol. 2017, 227, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuling, U.; Kaltschmitt, M. Techno-economic and environmental analysis of aviation biofuels. Fuel Process. Technol. 2018, 171, 54–69. [Google Scholar] [CrossRef]
- Diederichs, G.W.; Ali Mandegari, M.; Farzad, S.; Görgens, J.F. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresour. Technol. 2016, 216, 331–399. [Google Scholar] [CrossRef] [PubMed]
- Capaz, R.S.; Guida, E.; Seabra, J.E.A.; Osseweijer, P.; Posada, J.A. Mitigating carbon emissions through sustainable aviation fuels: Costs and potential. Biofuels Bioprod. Biorefin. 2020, 15, 502–524. [Google Scholar] [CrossRef]
- Le Freuve, P. Are Biofuels Ready for Take off? International Energy Agency: 2019. Available online: https://www.iea.org/commentaries/are-aviation-biofuels-ready-for-take-off (accessed on 1 June 2021).
- Klein, B.C.; Chagas, M.F.; Junqueira, T.L.; Rezende, M.C.A.F.; Cardoso, T.D.F.; Cavalett, O.; Bonomi, A. Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Appl. Energy 2018, 209, 290–305. [Google Scholar] [CrossRef]
- Bosch, J.; de Jong, S.; Hoefnagels, R.; Slade, R. Aviation Biofuels: Strategically Important, Technically Achievable, Tough to Deliver; Grantham Institute—Imperial College: London, UK, 2017. [Google Scholar]
- Argus Media Database. Available online: https://www.argusmedia.com/en/press-releases/2020/argus-launches-new-price-as-europe-moves-towards-sustainable-aviation-fuel (accessed on 28 June 2021).
- IATA—International Air Transport Association. Jet Fuel Price Monitor. Available online: https://www.iata.org/en/publications/economics/fuel-monitor/ (accessed on 25 June 2021).
- Platts Global Index. IATA Jet Fuel Price Monitor Information. Available online: https://www.airportwatch.org.uk/iata-jet-fuel-price-monitor-information/ (accessed on 15 March 2021).
- ICAO—International Civil Aviation Organization. CORSIA Supporting Document—CORSIA Eligible Fuels—Life Cycle Assessment Methodology. 2019. Available online: www.icao.int/environmental-protection/CORSIA/documents/Forms/AllItems.aspx (accessed on 20 March 2021).
- ICAO—International Civil Aviation Organization. Climate Change Mitigation: CORSIA. Chapter Six. 2019. Available online: www.icao.int/environmental-protection/CORSIA/documents/Forms/AllItems.aspx (accessed on 20 March 2021).
- SAFmaps. Available online: www.safmaps.com (accessed on 18 April 2021).
Conversion Process | Route | Feedstocks | Blending Ratio | Commercial Initiatives |
---|---|---|---|---|
Fischer-Tropsch hydroprocessed synthesised paraffinic kerosene | FT-SPK | Coal, natural gas, biomass | 50% | Fulcrum Bioenergy, Red Rock Biofuels, SG Preston, Kaidi, Sasol, Shell, Syntroleum |
Synthesised paraffinic kerosene produced from hydroprocessed esters and fatty acids | HEFA-SPK | Bio-oils, animal fat, recycled oils | 50% | World Energy, Honeywell UOP, Neste Oil, Dynamic Fuels, EERC |
Synthesised isoparaffins produced from hydroprocessed fermented sugars | SIP-HFS | Biomass used for sugar production | 10% | Amyris, Total |
Synthesised kerosene with aromatics derived by alkylation of light aromatics from nonpetroleum sources | SPK/A | Coal, natural gas, biomass | 50% | Sasol |
Alcohol-to-jet synthetic paraffinic kerosene | ATJ-SPK | Biomass from ethanol or isobutanol production | 50% | Gevo, Cobalt, Honeywell UOP, Lanzatech, Swedish Biofuels, Byogy |
Synthesised kerosene from hydrothermal conversion of fatty acid esters and fatty acids | CHJ | Bio-oils, animal fat, recycled oils | 50% | ARA |
Synthesised paraffinic kerosene from hydroprocessed hydrocarbons, esters and fatty acids | HC-HEFA SPK | Oils produced from (Botryococcus braunii) algae | 10% | IHI Corporation |
Co-processing | Fats, oils, and greases (FOG) from petroleum refining | 5% |
Parameters | Units | FT-SPK | HEFA-SPK | ATJ-SPK | FT-SPK | HEFA-SPK | ATJ-SPK |
---|---|---|---|---|---|---|---|
Based on the Literature | Assumed in the Base Case | ||||||
Industrial yield | tHC·tf−1 | 0.170 | 0.830 | 0.504 | 0.170 | 0.830 | 0.504 |
Industrial yield | kgSAF·tf−1 | 25.5 | 120.0 | 378.8 | 25.5 | 120.0 | 378.8 |
Input capacity | tf·day−1 | 2000 | 2500 | 482 | 2400 | 2041 | 647 |
HCs production | tHC·day−1 | 340.0 | 2075 | 242.9 | 408.0 | 1694 | 325.9 |
SAF production | tSAF·day−1 | 51.0 | 300.1 | 182.6 | 61.2 | 245.0 | 245.0 |
Number of Modules | Annual Wood Requirement | Guaratinguetá | SJ Campos | Conchas | Quatá | Espigão |
---|---|---|---|---|---|---|
1 | 788.4 | 409 | 212 | 56 | 133 | 0 |
2 | 1576.8 | 504 | 212 | 156 | 453 | 278 |
3 | 2365.2 | 513 | 225 | 278 | 509 | 859 |
4 | 3153.6 | 682 | 299 | 492 | 620 | 1063 |
Remaining | 351.0 | 100 | 36 | 61 | 2 | 153 |
Parameter | Units | FT-SPK | FT-SPK | HEFA-SPK | ATJ-SPK |
---|---|---|---|---|---|
Biomass produced at | Mainly two sites | All five sites | Paranaíba (MS) | Caçu (GO) | |
Production capacity | tSAF·day−1 | 61.2 | 244.8 | 245.0 | 245.0 |
Feedstock CIF cost | (EUR·GJ−1) | 2.54 | 3.12 | 5.15 | 12.37 |
MSPSAF (EUR·GJ−1) | (EUR·GJ−1) | 33.8 | 32.0 | 13.4 | 21.0 |
MSP structure | |||||
Capital costs | (%) | 40.8 | 37.6 | 26.1 | 8.7 |
Feedstock | (%) | 22.1 | 28.7 | 42.8 | 80.4 |
Hydrogen | (%) | ___ | ___ | 5.2 | 1.6 |
O&M & other inputs | (%) | 38.8 | 35.8 | 24.5 | 9.0 |
Taxes | (%) | 2.2 | 2.0 | 1.4 | 0.5 |
Surplus electricity | (%) | −3.9 | −4.1 | ___ | ___ |
Case and Parameters | FT-SPK | HEFA-SPK | ATJ-SPK |
---|---|---|---|
Biomass produced at | All five sites | Paranaíba (MS) | Caçu (GO) |
MSPSAF (EUR·GJ−1) in the base case | 32.0 | 13.4 | 21.0 |
Capital costs (±10%) | ±3.8% | ±2.6% | ±0.9% |
O&M & other inputs (±10%) | ±3.7% | ±3.0% | ±1.1% |
Feedstock CIF costs (±10%, combining the factors below) | ±2.9% | ±4.3% | ±8.1% |
Feedstock costs (impact of long-distance transport costs) | ±0.7% | ±0.4% | ±0.3% |
Feedstock costs (impact of biomass/intermediate costs) | ±2.2% | ±3.9% | ±7.8% |
Route | MSP Results | Other Estimates | Reference | Comments |
---|---|---|---|---|
FT-SPK | 32.0–33.8 EUR·GJ−1 1369–1446 EUR·t−1 | 38–55 EUR·GJ−1 | [25] | Feedstock: forest residues and wheat straw (feedstock CIF costs 4.8 EUR·GJ−1 or 10.6 EUR·GJ−1, respectively) |
1188–1738 US$·t−1 | [40] | Feedstock: municipal solid waste (MSW) (not charged) | ||
1244 and 1982 US$·t−1 | [41] | Feedstock: willow pretreated (lower value) and wheat straw (higher value) | ||
2440 EUR·t−1 | [42] | Feedstock: lignocellulosic residues | ||
32.4 US$·GJ−1 | [43] | Feedstock: lignocellulosic residues | ||
HEFA-SPK | 13.0–17.2 EUR·GJ−1 555–736 EUR·t−1 | 29 EUR·GJ−1/1241 EUR·t−1 | [25] | Feedstock: used cooking oil (UCO). |
770–1750 EUR·t−1 | [44] | From different feedstocks. Figures are for production costs. | ||
825–1550 US$·t−1; 988–1775 US$·t−1; 1086–2000 US$·t−1 | [40] | From top to bottom, estimated MSP from yellow grease, tallow and soybean oil | ||
23.1 US$·GJ−1 | [45] | From soybean oil in Brazilian conditions | ||
36.4 US$·GJ−1 | [43] | From soybean oil in Brazilian conditions | ||
ATJ-SPK | 20.6–21.4 EUR·GJ−1 880–915 EUR·t−1 | 52–78 EUR·GJ−1 | [25] | Produced from second-generation (2G) ethanol |
2300 and 3500 EUR·t−1 | [46] | From second-generation ethanol, from forest residues (lower value) and wheat straw (higher value) | ||
27.2 and 36.6 US$·GJ−1 | [45] | From first-generation (1G) and 2G ethanol in Brazilian conditions | ||
33.7 US$·GJ−1 | [43] | From 1G ethanol in Brazilian conditions |
Feedstock | Area Assessed (km2) | Production (1000 t) | Area Assessed (km2) | Production (1000 t) |
---|---|---|---|---|
No (Additional) Restrictions Imposed | In Moderate and Severe Degraded Lands | |||
Soybean | 25,836.1 | 9522.3 | 5469.9 | 2310.0 |
Sugarcane | 728.4 | 6460.9 | 204.6 | 1815.1 |
Corn | 1416.0 | 1006.0 | 363.0 | 257.8 |
Parameter | Jet Fuel | HEFA-SPK | ATJ-SPK |
---|---|---|---|
Life cycle emission factor (gCO2e·MJ−1) | 89.0 | 67.4 | 32.8 * |
Core LCA value (gCO2e·MJ−1) | 40.4 | 24.1 * | |
iLUC LCA value (gCO2e·MJ−1) | 27.0 | 8.7 * | |
Avoided emissions per tonne of SAF (tCO2) | 0.707 | 1.995 | |
Jet fuel price (as for June 2021) (EUR·t−1) | 514 ** | ||
MSP in the base case (EUR·t−1) | 574 | 899 | |
MSP in the low iLUC case (EUR·t−1) | 651 | 976 | |
MSP based on market prices (EUR·t−1) | 1070 | 1288 | |
Cost of avoided emissions—base case (EUR·tCO2−1) | 77.2 | 192.7 | |
Cost of avoided emissions—low iLUC *** (EUR·tCO2−1) | 79.0 | 200.3 | |
Cost of avoided emissions—market prices (EUR·tCO2−1) | 724.6 | 387.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walter, A.; Seabra, J.; Rocha, J.; Guarenghi, M.; Vieira, N.; Damame, D.; Santos, J.L. Spatially Explicit Assessment of the Feasibility of Sustainable Aviation Fuels Production in Brazil: Results of Three Case Studies. Energies 2021, 14, 4972. https://doi.org/10.3390/en14164972
Walter A, Seabra J, Rocha J, Guarenghi M, Vieira N, Damame D, Santos JL. Spatially Explicit Assessment of the Feasibility of Sustainable Aviation Fuels Production in Brazil: Results of Three Case Studies. Energies. 2021; 14(16):4972. https://doi.org/10.3390/en14164972
Chicago/Turabian StyleWalter, Arnaldo, Joaquim Seabra, Jansle Rocha, Marjorie Guarenghi, Nathália Vieira, Desirèe Damame, and João Luís Santos. 2021. "Spatially Explicit Assessment of the Feasibility of Sustainable Aviation Fuels Production in Brazil: Results of Three Case Studies" Energies 14, no. 16: 4972. https://doi.org/10.3390/en14164972
APA StyleWalter, A., Seabra, J., Rocha, J., Guarenghi, M., Vieira, N., Damame, D., & Santos, J. L. (2021). Spatially Explicit Assessment of the Feasibility of Sustainable Aviation Fuels Production in Brazil: Results of Three Case Studies. Energies, 14(16), 4972. https://doi.org/10.3390/en14164972