Optimal Decision Making in Electrical Systems Using an Asset Risk Management Framework
Abstract
:1. Introduction
- Criticality assessment by Monte Carlo simulations considering both load growth and profile;
- Forecasting of asset management index using diagnostic records;
- Monetization of strategic objectives such as financial, environmental, legal, and reliability;
- Comparison between “do nothing”, replacement, or maintenance strategies for an asset fleet considering the optimal ROI modeling the risk variation in time as TOTEX outcomes;
- A mathematical formulation in order to reduce the computational effort to estimate optimal maintenance strategies and replacement time is presented.
2. Asset Management Framework
2.1. Asset Condition Using Health Index (HI)
2.2. Reliability Assessment
2.3. Risk Index
3. Proposed Risk Assessment Procedure
3.1. Risk Index Forecasting
3.2. Optimal Decision-Making Assessment
3.2.1. Optimal Replacement Strategy
3.2.2. Optimal Maintenance Strategy
4. Evaluation of the Proposed Procedure
4.1. System Description
4.2. Power Transformer Conditions
4.3. Condition Assessment
4.4. Reliability Assessment
4.5. Risk Assessment
4.6. Optimal Decision Making
4.6.1. Optimal Replacement
4.6.2. Optimal Maintenance
4.7. Discussion of Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- CIGRE WG C1. 25. Asset Management Decision Making Using Different Risk Assessment Methodologies; CIGRE: Boston, MA, USA, 2013. [Google Scholar]
- CIGRE WG C1. 34. TB 787: ISO Series 55000 Standards: Implementation and Information Guidelines for Utilities; CIGRE: Boston, MA, USA, 2019; pp. 1–203. [Google Scholar]
- Maletič, D.; Maletič, M.; Al-Najjar, B.; Gomišček, B. An Analysis of Physical Asset Management Core Practices and Their Influence on Operational Performance. Sustainability 2020, 12, 9097. [Google Scholar] [CrossRef]
- Lima, E.S.; McMahon, P.; Costa, A.P.C.S. Establishing the relationship between asset management and business performance. Int. J. Prod. Econ. 2021, 232, 107937. [Google Scholar] [CrossRef]
- Abu-Elanien, A.E.; Salama, M.M. Asset management techniques for transformers. Electr. Power Syst. Res. 2010, 80, 456–464. [Google Scholar] [CrossRef]
- IEC. Strategic asset management of power networks. In International Electrotechnical Commission; IEC: New York, NY, USA, 2015. [Google Scholar]
- Goyal, A.; Aprilia, E.; Janssen, G.; Kim, Y.; Kumar, T.; Mueller, R.; Phan, D.; Raman, A.; Schuddebeurs, J.; Xiong, J.; et al. Asset health management using predictive and prescriptive analytics for the electric power grid. IBM J. Res. Dev. 2016, 60, 4:1–4:14. [Google Scholar] [CrossRef]
- Bertling, L.; Allan, R.; Eriksson, R. A Reliability-Centered Asset Maintenance Method for Assessing the Impact of Maintenance in Power Distribution Systems. IEEE Trans. Power Syst. 2005, 20, 75–82. [Google Scholar] [CrossRef]
- Koksal, A.; Ozdemir, A. Improved transformer maintenance plan for reliability centred asset management of power transmission system. IET Gener. Transm. Distrib. 2016, 10, 1976–1983. [Google Scholar] [CrossRef]
- Dong, M.; Zheng, H.; Zhang, Y.; Shi, K.; Yao, S.; Kou, X.; Ding, G.; Guo, L. A Novel Maintenance Decision Making Model of Power Transformers Based on Reliability and Economy Assessment. IEEE Access 2019, 7, 28778–28790. [Google Scholar] [CrossRef]
- Nagata, M.; Takehara, A.; Kurihara, I. Development of a support tool to level transmission equipment replacements over long term. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, DC, USA, 15–18 March 2009; pp. 1–7. [Google Scholar] [CrossRef]
- Fattaheian-Dehkordi, S.; Fotuhi-Firuzabad, M.; Ghorani, R. Transmission System Critical Component Identification Considering Full Substations Configuration and Protection Systems. IEEE Trans. Power Syst. 2018, 33, 5365–5373. [Google Scholar] [CrossRef]
- Ofgem. DNO Common Network Asset Indices Methodology; Technical Report January; Ofgem: London, UK, 2017. [Google Scholar]
- Côté, A.; Messaoudi, D.; Komljenovic, D.; Alarie, S.; Blancke, O.; Boudreau, J.; Gaha, M.; Truchon, E.; Pelletier, S. Development of an Asset Management Decision Support Tool for Hydro-Québec TransÉnergie. In Proceedings of the 2019 CIGRE CANADA Conference, Le Westin, Montréal, QC, Canada, 16–19 September 2019. [Google Scholar]
- Komljenovic, D.; Messaoudi, D.; Côté, A.; Gaha, M.; Vouligny, L.; Alarie, S.; Dems, A.; Blancke, O. Asset Management in Electrical Utilities in the Context of Business and Operational Complexity. In 14th WCEAM Proceedings; Crespo Márquez, A., Komljenovic, D., Amadi-Echendu, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 34–45. [Google Scholar] [CrossRef]
- CIGRE WG C1. 38. Valuation as a Comprehensive Emerging Developments Management in View of Approach to Asset—TB 791; Number September; CIGRE: Boston, MA, USA, 2019; pp. 1–45. [Google Scholar]
- Alvarez, D.L.; Rosero, L.S.; Rivera, S.R.; Romero, A.A. A Framework For Asset Management in Electrical Systems, Part I: Conceptual Model. In Proceedings of the 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Manizales, Colombia, 30–31 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Azmi, A.; Jasni, J.; Azis, N.; Kadir, M.A. Evolution of transformer health index in the form of mathematical equation. Renew. Sustain. Energy Rev. 2017, 76, 687–700. [Google Scholar] [CrossRef]
- CIGRE WG C1. 16. Transmission Asset Risk Management; Technical Brochure 422; CIGRE: Boston, MA, USA, 2010. [Google Scholar]
- Brown, R.E.; Frimpong, G.; Willis, H.L. Failure rate modeling using equipment inspection data. IEEE Trans. Power Syst. 2004, 19, 782–787. [Google Scholar] [CrossRef]
- Athay, T.; Podmore, R.; Virmani, S. A Practical Method for the Direct Analysis of Transient Stability. IEEE Trans. Power Appar. Syst. 1979, PAS-98, 573–584. [Google Scholar] [CrossRef]
- Cruz, L.M.; Alvarez, D.L.; Rivera, S.R.; Herrera, F.A. On-Line Contingency Assessment Using Short-Term Load Forecasting. In Proceedings of the 2019 FISE-IEEE/CIGRE Conference—Living the Energy Transition (FISE/CIGRE), Medellin, Colombia, 4–6 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Cruz, L.M.; Alvarez, D.L.; Rivera, S.R.; Herrera, F.A. Short-Term Demand Forecast Using Fourier Series. In Proceedings of the 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Manizales, Colombia, 30–31 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Thurner, L.; Scheidler, A.; Schafer, F.; Menke, J.H.; Dollichon, J.; Meier, F.; Meinecke, S.; Braun, M. Pandapower—An Open-Source Python Tool for Convenient Modeling, Analysis, and Optimization of Electric Power Systems. IEEE Trans. Power Syst. 2018, 33, 6510–6521. [Google Scholar] [CrossRef] [Green Version]
- IEEE. Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- IEEE. IEEE Guide for Diagnostic Field Testing of Fluid-Filled Power Transformers, Regulators, and Reactors; IEEE: New York, NY, USA, 2013; Volume 2013, pp. 1–121. [Google Scholar] [CrossRef]
- Rosero, L.S.; Alvarez, D.L.; Amortegui, F.J.; Hernandez, G.; Garcia, S.R. A Framework For Asset Management in Electrical Systems, Part II: Case Study—Power Transformers. In Proceedings of the 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Manizales, Colombia, 30–31 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Asset | |||
---|---|---|---|
TR_1 | 8.40E+04 | 1.00E+05 | |
TR_2 | 1.20E+05 | ||
TR_3 | 1.20E+05 | 1.00E+03 | |
TR_4 | 9.60E+04 | 1.00E+03 | |
TR_5 | 8.40E+04 | ||
TR_6 | 9.60E+04 | ||
TR_7 | 1.20E+05 | ||
TR_8 | 7.20E+04 | ||
TR_9 | 3.60E+04 | ||
TR_10 | 9.60E+04 | 1.00E+05 | |
TR_11 | 3.60E+04 | ||
TR_12 | 8.40E+04 | 2.00E+03 |
TR Rating-[S] | HI | |||
---|---|---|---|---|
2020 | 2021 | 2025 | 2029 | |
TR_1 700 | 0.24 | 0.31 | 0.48 | 0.53 |
TR_2 1000 | 0.50 | 0.52 | 0.58 | 0.63 |
TR_3 1000 | 0.69 | 0.70 | 0.77 | 0.82 |
TR_4 800 | 0.47 | 0.48 | 0.53 | 0.57 |
TR_5 700 | 0.81 | 0.82 | 0.87 | 0.89 |
TR_6 800 | 0.33 | 0.40 | 0.50 | 0.54 |
TR_7 1000 | 0.56 | 0.57 | 0.62 | 0.66 |
TR_8 600 | 0.41 | 0.43 | 0.52 | 0.61 |
TR_9 300 | 0.55 | 0.57 | 0.65 | 0.73 |
TR_10 800 | 0.75 | 0.76 | 0.79 | 0.82 |
TR_11 300 | 0.40 | 0.48 | 0.68 | 0.72 |
TR_12 700 | 0.61 | 0.65 | 0.74 | 0.79 |
TR Rating-[S] | Constant | ||
---|---|---|---|
a | b | c | |
S ≤ 25 | 0.01565 | 2.2478602 | −0.008148 |
S > 25 | 0.00962 | 2.5618677 | −0.004615 |
Year | Cumulative ENS—GW h | ||
---|---|---|---|
85% | 95% | 99% | |
2020 | 6.4 | 41.2 | 54.8 |
2021 | 24.5 | 49.8 | 74.1 |
2025 | 65.4 | 95.9 | 134.4 |
2029 | 112.1 | 154.1 | 208.6 |
Asset | CAPEX [$] | OPEX- [$] | Income Per Year [$] |
---|---|---|---|
TR_1 | 63e3 | 1.4e3 | 7e3 |
TR_2 | 90e3 | 2e3 | 10e3 |
TR_3 | 90e3 | 2e3 | 10e3 |
TR_4 | 72e3 | 1.6e3 | 8e3 |
TR_5 | 63e3 | 1.4e3 | 7e3 |
TR_6 | 72e3 | 1.6e3 | 8e3 |
TR_7 | 90e3 | 2e3 | 10e3 |
TR_8 | 54e3 | 1.2e3 | 6e3 |
TR_9 | 27e3 | 0.6e3 | 3e3 |
TR_10 | 72e3 | 1.6e3 | 8e3 |
TR_11 | 27e3 | 0.6e3 | 3e3 |
TR_12 | 63e3 | 1.4e3 | 7e3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, D.L.; Rodriguez, D.F.; Cardenas, A.; da Silva, F.F.; Leth Bak, C.; García, R.; Rivera, S. Optimal Decision Making in Electrical Systems Using an Asset Risk Management Framework. Energies 2021, 14, 4987. https://doi.org/10.3390/en14164987
Alvarez DL, Rodriguez DF, Cardenas A, da Silva FF, Leth Bak C, García R, Rivera S. Optimal Decision Making in Electrical Systems Using an Asset Risk Management Framework. Energies. 2021; 14(16):4987. https://doi.org/10.3390/en14164987
Chicago/Turabian StyleAlvarez, David L., Diego F. Rodriguez, Alben Cardenas, F. Faria da Silva, Claus Leth Bak, Rodolfo García, and Sergio Rivera. 2021. "Optimal Decision Making in Electrical Systems Using an Asset Risk Management Framework" Energies 14, no. 16: 4987. https://doi.org/10.3390/en14164987
APA StyleAlvarez, D. L., Rodriguez, D. F., Cardenas, A., da Silva, F. F., Leth Bak, C., García, R., & Rivera, S. (2021). Optimal Decision Making in Electrical Systems Using an Asset Risk Management Framework. Energies, 14(16), 4987. https://doi.org/10.3390/en14164987