Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions
Abstract
:1. Introduction
2. Methodology
3. Applications of ML Methods in the Life Cycle of Biofuels
3.1. Soil
3.2. Feedstock
3.3. Production
3.3.1. Biodiesel
Quality Estimation
Yield Estimation
Quality and Yield Optimization
Estimation and Optimization of Process Conditions and Efficiency
3.3.2. Biogas
Quality Estimation
Yield Estimation
Optimization of Quality and Yield
3.3.3. Biohydrogen
3.3.4. Miscellaneous (Bioethanol, Bisabolene)
3.4. Consumption, Engine Performance and Emissions
3.4.1. ANN
3.4.2. Neuro Fuzzy Inference System
3.4.3. Extreme Learning Method
3.4.4. Support Vector Machine and Least Square Methods
3.5. Application Summary
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALFIMO | Artificial Linear Interdependent Fuzzy Multi-Objective Optimization |
AFR | Air-to-Fuel Ratio |
AI | Artificial Intelligence |
ANFIS | Adaptive Neuro-Fuzzy Interference System |
ANN | Artificial Neural Networks |
ALS | Alternative Least Square |
ASTM | American Society for Testing and Materials |
BRT | Boosted Regression Tree |
CE | Conversion Efficiency |
CN | Cetane Number |
COD | Chemical Oxygen Demand |
CS | Cuckoo Search |
DA | Discriminant Analysis |
ELM | Extreme Learning Machine |
ERT | Extremely Randomized Trees |
FAME | Fatty Acid Methyl Ester |
FCM | Fuzzy C-Means |
FCMC | Fuzzy C-Means Clustering |
FEE | Functional Exergy Efficiency |
FP | Flash Point |
GA | Genetic Algorithm |
GBD | eXtreme Gradient Boosting-xgbDART |
GBL | eXtreme Gradient Boosting-xgbLinear |
GBT | eXtreme Gradient Boosting-xgbtree |
GIP | Group Interaction Parameters |
GPM | Gaussian Process Model |
K-ELM | Kernel-based Extreme Learning Machine |
KV | Kinematic Viscosity |
LLE | Liquid-Liquid Equilibrium |
LME | Linear Mixed-Effects |
LR | Linear Regression |
LS | Least Square |
MCR | Multivariate Curve Resolution |
ML | Machine Learning |
MNLR | Multiple Non-Linear Regression |
MSE | Mean Squared Error |
NED | Normalized Exergy Destruction |
NN | Neural Network |
OME | Orange oil Methyl Ester |
PAT | Process Analytical Technologies |
PCA | Principal Component Analysis |
PLS | Partial least square |
PU/MU | Mono and poly-unsaturated fatty acids balance |
R2 | Correlation coefficient/Coefficient of determination |
RB-FNN | Radial Basis Function Neural Network |
RF | Random Forest |
RFM | Random Forest Model |
RLS | Recursive Least Squares |
RSM | Response Surface Methodology |
SFC | Specific Fuel Consumption |
SVM | Support Vector Machines |
SVM-FFA | Support Vector Machine Firefly Algorithm |
SVM-QPSO | Support vector machine based on quantum particle swarm optimization |
SVM-RBF | Support Vector Machine with the Radial Basis Function |
SVM-WT | Support Vector Machine Wavelet Transform |
SVR | Support Vector Regression |
TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
TS | Total Solids |
TVS | Total Volatile Solids |
UAC | Upflow Anaerobic Contactor |
UASB | Upflow Anaerobic Sludge Blanket |
UEE | Universal Exergy Efficiency |
VCR | Variable Compression Ratio |
VFA | Total volatile fatty acid |
References
- Samuel, A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Shobha, G.; Rangaswamy, S. Computational analysis and understand of natural languages: Principles, methods and applications. In Handbook of Statistics; North-Holland: Amsterdam, The Netherlands, 2018. [Google Scholar]
- El Bouchefry, K.; de Souza, R.S. Learning in big data: Introduction to machine learning. In Knowledge Discovery in Big Data from Astronomy and Earth Observation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 225–249. [Google Scholar]
- Popovic, D. Intelligent Control with Neural Networks. In Soft Computing and Intelligent Systems; Elsevier: Amsterdam, The Netherlands, 2000; pp. 419–467. [Google Scholar]
- Ge, Z.; Song, Z.; Ding, S.X.; Huang, B. Data mining and analytics in the process industry: The role of machine learning. IEEE Access 2017, 5, 20590–20616. [Google Scholar] [CrossRef]
- De, R.; Rajan, A.; Govindaraj, K.; Kinage, A.; Ramamurthy, R.K.; Schreder, J.; Peters, C. System and Method for Industrial Process Automation Controller Farm with Flexible Redundancy Schema and Dynamic Resource Management through Machine Learning. U.S. Patent 10,416,630, 17 September 2019. [Google Scholar]
- Keliris, A.; Salehghaffari, H.; Cairl, B.; Krishnamurthy, P.; Maniatakos, M.; Khorrami, F. Machine learning-based defense against process-aware attacks on industrial control systems. In Proceedings of the 2016 IEEE International Test Conference (ITC), Fort Worth, TX, USA, 15–17 November 2016; pp. 1–10. [Google Scholar]
- Kanawaday, A.; Sane, A. Machine learning for predictive maintenance of industrial machines using IoT sensor data. In Proceedings of the 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017; pp. 87–90. [Google Scholar]
- Weichert, D.; Link, P.; Stoll, A.; Rüping, S.; Ihlenfeldt, S.; Wrobel, S. A review of machine learning for the optimization of production processes. Int. J. Adv. Manuf. Technol. 2019, 104, 1889–1902. [Google Scholar] [CrossRef]
- Lahdhiri, H.; Said, M.; Abdellafou, K.B.; Taouali, O.; Harkat, M.F. Supervised process monitoring and fault diagnosis based on machine learning methods. Int. J. Adv. Manuf. Technol. 2019, 102, 2321–2337. [Google Scholar] [CrossRef]
- Rymarczyk, T.; Kozłowski, E.; Kłosowski, G.; Niderla, K. Logistic Regression for Machine Learning in Process Tomography. Sensors 2019, 19, 3400. [Google Scholar] [CrossRef] [Green Version]
- Min, Q.; Lu, Y.; Liu, Z.; Su, C.; Wang, B. Machine learning based digital twin framework for production optimization in petrochemical industry. Int. J. Inf. Manag. 2019, 49, 502–519. [Google Scholar] [CrossRef]
- Anifowose, F.A.; Labadin, J.; Abdulraheem, A. Ensemble machine learning: An untapped modeling paradigm for petroleum reservoir characterization. J. Pet. Sci. Eng. 2017, 151, 480–487. [Google Scholar] [CrossRef]
- Oey, T.; Jones, S.; Bullard, J.W.; Sant, G. Machine learning can predict setting behavior and strength evolution of hydrating cement systems. J. Am. Ceram. Soc. 2020, 103, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Unnikrishnan, S.; Donovan, J.; Macpherson, R.; Tormey, D. Machine Learning for Automated Quality Evaluation in Pharmaceutical Manufacturing of Emulsions. J. Pharm. Innov. 2020, 15, 392–403. [Google Scholar] [CrossRef]
- Guo, S.; Yu, J.; Liu, X.; Wang, C.; Jiang, Q. A predicting model for properties of steel using the industrial big data based on machine learning. Comput. Mater. Sci. 2019, 160, 95–104. [Google Scholar] [CrossRef]
- Sewsynker-Sukai, Y.; Faloye, F.; Kana, E.B.G. Artificial neural networks: An efficient tool for modelling and optimization of biofuel production (a mini review). Biotechnol. Biotechnol. Equip. 2017, 31, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Ardabili, S.; Mosavi, A.; Várkonyi-Kóczy, A.R. Systematic review of deep learning and machine learning models in biofuels research. In International Conference on Global Research and Education; Springer: Berlin/Heidelberg, Germany, 2019; pp. 19–32. [Google Scholar]
- Gleason, C.J.; Im, J. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80–91. [Google Scholar] [CrossRef]
- Huntington, T.; Cui, X.; Mishra, U.; Scown, C.D. Machine learning to predict biomass sorghum yields under future climate scenarios. Biofuels Bioprod. Biorefin. 2020, 14, 566–577. [Google Scholar] [CrossRef]
- Habyarimana, E.; Piccard, I.; Catellani, M.; De Franceschi, P.; Dall’Agata, M. Towards predictive modeling of sorghum biomass yields using fraction of absorbed photosynthetically active radiation derived from sentinel-2 satellite imagery and supervised machine learning techniques. Agronomy 2019, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.K.; Zhang, W.J.; Zhang, X.; Adler, P.R.; Lin, S.; Feingold, B.J.; Khwaja, H.A.; Romeiko, X.X. Projecting life-cycle environmental impacts of corn production in the US Midwest under future climate scenarios using a machine learning approach. Sci. Total Environ. 2020, 714, 136697. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhao, Q.; Cai, X. Machine learning based estimation of land productivity in the Contiguous US using biophysical predictors. Environ. Res. Lett. 2020, 15, 074013. [Google Scholar] [CrossRef] [Green Version]
- Mahanty, B.; Zafar, M.; Park, H.S. Characterization of co-digestion of industrial sludges for biogas production by artificial neural network and statistical regression models. Environ. Technol. 2013, 34, 2145–2153. [Google Scholar] [CrossRef] [PubMed]
- Mairizal, A.Q.; Awad, S.; Priadi, C.R.; Hartono, D.M.; Moersidik, S.S.; Tazerout, M.; Andres, Y. Experimental study on the effects of feedstock on the properties of biodiesel using multiple linear regressions. Renew. Energy 2020, 145, 375–381. [Google Scholar] [CrossRef]
- Giwa, S.O.; Adekomaya, S.O.; Adama, K.O.; Mukaila, M.O. Prediction of selected biodiesel fuel properties using artificial neural network. Front. Energy 2015, 9, 433–445. [Google Scholar] [CrossRef]
- Tchameni, A.P.; Zhao, L.; Ribeiro, J.X.; Li, T. Predicting the rheological properties of waste vegetable oil biodiesel-modified water-based mud using artificial neural network. Geosyst. Eng. 2019, 22, 101–111. [Google Scholar] [CrossRef]
- Dahunsi, S. Mechanical pretreatment of lignocelluloses for enhanced biogas production: Methane yield prediction from biomass structural components. Bioresour. Technol. 2019, 280, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Reimann, R.; Zeng, B.; Jakopec, M.; Burdukiewicz, M.; Petrick, I.; Schierack, P.; Rödiger, S. Classification of dead and living microalgae Chlorella vulgaris by bioimage informatics and machine learning. Algal Res. 2020, 48, 101908. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, Y.; Yang, H.; Liu, M.; Xiao, H.; Wu, Z.; Chen, H.; Naqvi, S.R. Prediction of bio-oil yield and hydrogen contents based on machine learning method: Effect of biomass compositions and pyrolysis conditions. Energy Fuels 2020, 34, 11050–11060. [Google Scholar] [CrossRef]
- Shahbeig, H.; Nosrati, M. Pyrolysis of biological wastes for bioenergy production: Thermo-kinetic studies with machine-learning method and Py-GC/MS analysis. Fuel 2020, 269, 117238. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G.; Marques, G. Application of linear regression algorithm and stochastic gradient descent in a machine-learning environment for predicting biomass higher heating value. Biofuels Bioprod. Biorefin. 2020, 14, 1286–1295. [Google Scholar] [CrossRef]
- Kumar, R.; Dhanarajan, G.; Sarkar, D.; Sen, R. Multi-fold enhancement in sustainable production of biomass, lipids and biodiesel from oleaginous yeast: An artificial neural network-genetic algorithm approach. Sustain. Energy Fuels 2020, 4, 6075–6084. [Google Scholar] [CrossRef]
- Cheng, F.; Luo, H.; Colosi, L.M. Slow pyrolysis as a platform for negative emissions technology: An integration of machine learning models, life cycle assessment, and economic analysis. Energy Convers. Manag. 2020, 223, 113258. [Google Scholar] [CrossRef]
- Cheng, F.; Porter, M.D.; Colosi, L.M. Is hydrothermal treatment coupled with carbon capture and storage an energy-producing negative emissions technology? Energy Convers. Manag. 2020, 203, 112252. [Google Scholar] [CrossRef]
- Soltani, S.; Rashid, U.; Roodbar Shojaei, T.; Nehdi, I.A.; Ibrahim, M. Modeling of the nanocrystalline-sized mesoporous zinc oxide catalyst using an artificial neural network for efficient biodiesel production. Chem. Eng. Commun. 2019, 206, 33–47. [Google Scholar] [CrossRef]
- Ahmad, I.; Ayub, A.; Ibrahim, U.; Khattak, M.K.; Kano, M. Data-Based Sensing and Stochastic Analysis of Biodiesel Production Process. Energies 2019, 12, 63. [Google Scholar] [CrossRef] [Green Version]
- Gulum, M.; Onay, F.K.; Bilgin, A. Evaluation of predictive capabilities of regression models and artificial neural networks for density and viscosity measurements of different biodiesel-diesel-vegetable oil ternary blends. Environ. Clim. Technol. 2018, 22, 179–205. [Google Scholar] [CrossRef] [Green Version]
- Tomazzoni, G.; Meira, M.; Quintella, C.M.; Zagonel, G.F.; Costa, B.J.; de Oliveira, P.R.; Pepe, I.M.; da Costa Neto, P.R. Identification of vegetable oil or biodiesel added to diesel using fluorescence spectroscopy and principal component analysis. J. Am. Oil Chem. Soc. 2014, 91, 215–227. [Google Scholar] [CrossRef]
- Sarve, A.; Sonawane, S.S.; Varma, M.N. Ultrasound assisted biodiesel production from sesame (Sesamum indicum L.) oil using barium hydroxide as a heterogeneous catalyst: Comparative assessment of prediction abilities between response surface methodology (RSM) and artificial neural network (ANN). Ultrason. Sonochem. 2015, 26, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Jain, S.; Kumar, H. Prediction of jatropha-algae biodiesel blend oil yield with the application of artificial neural networks technique. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 41, 1285–1295. [Google Scholar] [CrossRef]
- Banerjee, A.; Varshney, D.; Kumar, S.; Chaudhary, P.; Gupta, V. Biodiesel production from castor oil: ANN modeling and kinetic parameter estimation. Int. J. Ind. Chem. 2017, 8, 253–262. [Google Scholar] [CrossRef]
- Kanat, G.; Saral, A. Estimation of Biogas Production Rate in a Thermophilic UASB Reactor Using Artificial Neural Networks. Environ. Model. Assess. 2008, 14, 607–614. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, S.; Kumar, H. Process parameter assessment of biodiesel production from a Jatropha–algae oil blend by response surface methodology and artificial neural network. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 2119–2125. [Google Scholar] [CrossRef]
- Chakraborty, R.; Sahu, H. Intensification of biodiesel production from waste goat tallow using infrared radiation: Process evaluation through response surface methodology and artificial neural network. Appl. Energy 2014, 114, 827–836. [Google Scholar] [CrossRef]
- Pandu, K.; Joseph, S.; Arun, N.; Sundaramoorthy, K. Optimization of biohydrogen production by Enterobacter species using artificial neural network and response surface methodology. J. Renew. Sustain. Energy 2013, 5, 033104. [Google Scholar]
- Kumar, S. Comparison of linear regression and artificial neural network technique for prediction of a soybean biodiesel yield. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 42, 1425–1435. [Google Scholar] [CrossRef]
- Moradi, G.; Dehghani, S.; Khosravian, F.; Arjmandzadeh, A. The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield. Renew. Energy 2013, 50, 915–920. [Google Scholar] [CrossRef]
- Guo, J.; Baghban, A. Application of ANFIS strategy for prediction of biodiesel production using supercritical methanol. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 1862–1868. [Google Scholar] [CrossRef]
- Mostafaei, M.; Javadikia, H.; Naderloo, L. Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy 2016, 115, 626–636. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B. Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil. Ultrason. Sonochem. 2015, 23, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Bobadilla, M.; Fernandez, R.; Lostado-Lorza, R.; Somovilla Gómez, F.; Vergara, E. Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines. Energies 2018, 11, 2995. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.Y.; Prayogo, D.; Ju, Y.H.; Wu, Y.W.; Sutanto, S. Optimizing mixture properties of biodiesel production using genetic algorithm-based evolutionary support vector machine. Int. J. Green Energy 2016, 13, 1599–1607. [Google Scholar] [CrossRef] [Green Version]
- Sivamani, S.; Selvakumar, S.; Rajendran, K.; Muthusamy, S. Artificial neural network–genetic algorithm-based optimization of biodiesel production from Simarouba glauca. Biofuels 2019, 10, 393–401. [Google Scholar] [CrossRef]
- Ighose, B.O.; Adeleke, I.A.; Damos, M.; Junaid, H.A.; Okpalaeke, K.E.; Betiku, E. Optimization of biodiesel production from Thevetia peruviana seed oil by adaptive neuro-fuzzy inference system coupled with genetic algorithm and response surface methodology. Energy Convers. Manag. 2017, 132, 231–240. [Google Scholar] [CrossRef]
- Dhingra, S.; Dubey, K.K.; Bhushan, G. A polymath approach for the prediction of optimized transesterification process variables of polanga biodiesel. J. Am. Oil Chem. Soc. 2014, 91, 641–653. [Google Scholar] [CrossRef]
- Ishola, N.B.; Okeleye, A.A.; Osunleke, A.S.; Betiku, E. Process modeling and optimization of sorrel biodiesel synthesis using barium hydroxide as a base heterogeneous catalyst: Appraisal of response surface methodology, neural network and neuro-fuzzy system. Neural Comput. Appl. 2019, 31, 4929–4943. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Mahlia, T.M.I.; Shamsuddin, A.H.; Ong, H.C.; Milano, J.; Kusumo, F.; Sebayang, A.H.; Dharma, S.; Ibrahim, H.; Husin, H.; et al. Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization. Energies 2019, 12, 3811. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, R.; Das, S.; Pradhan, P.; Mukhopadhyay, P. Prediction of optimal conditions in the methanolysis of mustard oil for biodiesel production using cost-effective mg-solid catalysts. Ind. Eng. Chem. Res. 2014, 53, 19681–19689. [Google Scholar] [CrossRef]
- Goharimanesh, M.; Lashkaripour, A.; Akbari, A.A. Optimization of biodiesel production using multi-objective genetic algorithm. J. Appl. Sci. Eng. 2016, 19, 117–124. [Google Scholar] [CrossRef]
- Oladipo, A.S.; Ajayi, O.A.; Oladipo, A.A.; Azarmi, S.L.; Nurudeen, Y.; Atta, A.Y.; Ogunyemi, S.S. Magnetic recyclable eggshell-based mesoporous catalyst for biodiesel production from crude neem oil: Process optimization by central composite design and artificial neural network. C. R. Chim. 2018, 21, 684–695. [Google Scholar] [CrossRef]
- Rajendra, M.; Jena, P.C.; Raheman, H. Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel 2009, 88, 868–875. [Google Scholar] [CrossRef]
- Fahmi, I.; Cremaschi, S. Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models. Comput. Chem. Eng. 2012, 46, 105–123. [Google Scholar] [CrossRef]
- Betiku, E.; Omilakin, O.R.; Ajala, S.O.; Okeleye, A.A.; Taiwo, A.E.; Solomon, B.O. Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis. Energy 2014, 72, 266–273. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, C. Toward estimation of biodiesel production from castor oil using ANN. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 40, 1469–1476. [Google Scholar] [CrossRef]
- Mujtaba, M.; Masjuki, H.; Kalam, M.; Ong, H.C.; Gul, M.; Farooq, M.; Soudagar, M.E.M.; Ahmed, W.; Harith, M.; Yusoff, M. Ultrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine-Cuckoo search. Renew. Energy 2020, 158, 202–214. [Google Scholar] [CrossRef]
- Bemani, A.; Xiong, Q.; Baghban, A.; Habibzadeh, S.; Mohammadi, A.H.; Doranehgard, M.H. Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO-LSSVM models. Renew. Energy 2020, 150, 924–934. [Google Scholar] [CrossRef]
- Karimi, M.; Jenkins, B.; Stroeve, P. Multi-objective optimization of transesterification in biodiesel production catalyzed by immobilized lipase: Multi-objective optimization of biodiesel production. Biofuels Bioprod. Biorefin. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Aghbashlo, M.; Hosseinpour, S.; Tabatabaei, M.; Soufiyan, M.M. Multi-objective exergetic and technical optimization of a piezoelectric ultrasonic reactor applied to synthesize biodiesel from waste cooking oil (WCO) using soft computing techniques. Fuel 2019, 235, 100–112. [Google Scholar] [CrossRef]
- Patle, D.S.; Sharma, S.; Ahmad, Z.; Rangaiah, G. Multi-objective optimization of two alkali catalyzed processes for biodiesel from waste cooking oil. Energy Convers. Manag. 2014, 85, 361–372. [Google Scholar] [CrossRef]
- Shukri, M.R.; Rahman, M.; Ramasamy, D.; Kadirgama, K. Artificial neural network optimization modeling on engine performance of diesel engine using biodiesel fuel. Int. J. Automot. Mech. Eng. 2015, 11, 2332–2347. [Google Scholar] [CrossRef]
- Sarve, A.N.; Varma, M.N.; Sonawane, S.S. Response surface optimization and artificial neural network modeling of biodiesel production from crude mahua (Madhuca indica) oil under supercritical ethanol conditions using CO2 as co-solvent. RSC Adv. 2015, 5, 69702–69713. [Google Scholar] [CrossRef]
- Kuen, H.Y.; Mjalli, F.S.; Koon, Y.H. Recursive Least Squares-Based Adaptive Control of a Biodiesel Transesterification Reactor. Ind. Eng. Chem. Res. 2010, 49, 11434–11442. [Google Scholar] [CrossRef]
- Rouchi, M.B.; Khorrami, M.K.; Garmarudi, A.B.; de la Guardia, M. Application of infrared spectroscopy as Process Analytics Technology (PAT) approach in biodiesel production process utilizing Multivariate Curve Resolution Alternative Least Square (MCR-ALS). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 347–353. [Google Scholar] [CrossRef]
- López-Zapata, B.; Adam Medina, M.; Alvarez Gutierrez, P.; Castillo González, J.; Hernandez-De-Leon, H.; Valdés, L. Virtual Sensors for Biodiesel Production in a Batch Reactor. Sustainability 2017, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Nicola, G.; Moglie, M.; Pacetti, M.; Santori, G. Bioenergy II: Modeling and Multi-Objective Optimization of Different Biodiesel Production Processes. Int. J. Chem. React. Eng. 2010, 8. [Google Scholar] [CrossRef]
- Noriega, M.A.; Narváez, P.C. UNIFAC correlated parameters for liquid-liquid equilibrium prediction of ternary systems related to biodiesel production process. Fuel 2019, 249, 365–378. [Google Scholar] [CrossRef]
- Wong, K.I.; Wong, P.K. Adaptive air-fuel ratio control of dual-injection engines under biofuel blends using extreme learning machine. Energy Convers. Manag. 2018, 165, 66–75. [Google Scholar] [CrossRef]
- Tufaner, F.; Avşar, Y.; Gönüllü, M.T. Modeling of biogas production from cattle manure with co-digestion of different organic wastes using an artificial neural network. Clean Technol. Environ. Policy 2017, 19, 2255–2264. [Google Scholar] [CrossRef]
- Asadi, M.; Guo, H.; McPhedran, K. Biogas production estimation using data-driven approaches for cold region municipal wastewater anaerobic digestion. J. Environ. Manag. 2020, 253, 109708. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, E.; Demir, A.; Varank, G. Estimation of biogas generation from a uasb reactor via multiple regression model. Int. J. Green Energy 2015, 12, 185–189. [Google Scholar] [CrossRef]
- Ghatak, M.D.; Ghatak, A. Artificial neural network model to predict behavior of biogas production curve from mixed lignocellulosic co-substrates. Fuel 2018, 232, 178–189. [Google Scholar] [CrossRef]
- Nair, V.V.; Dhar, H.; Kumar, S.; Thalla, A.K.; Mukherjee, S.; Wong, J.W. Artificial neural network based modeling to evaluate methane yield from biogas in a laboratory-scale anaerobic bioreactor. Bioresour. Technol. 2016, 217, 90–99. [Google Scholar] [CrossRef]
- Antwi, P.; Li, J.; Boadi, P.O.; Meng, J.; Shi, E.; Deng, K.; Bondinuba, F.K. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network. Bioresour. Technol. 2017, 228, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Ihunegbo, F.N.; Madsen, M.; Esbensen, K.H.; Holm-Nielsen, J.B.; Halstensen, M. Acoustic chemometric prediction of total solids in bioslurry: A full-scale feasibility study for on-line biogas process monitoring. Chemom. Intell. Lab. Syst. 2012, 110, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Qdais, H.A.; Hani, K.B.; Shatnawi, N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 2010, 54, 359–363. [Google Scholar] [CrossRef]
- Dibaba, O.; Lahiri, S.; T’Jonck, S.; Dutta, A. Experimental and Artificial Neural Network Modeling of a Upflow Anaerobic Contactor (UAC) for Biogas Production from Vinasse. Int. J. Chem. React. Eng. 2016, 14, 1241–1254. [Google Scholar] [CrossRef]
- Barik, D.; Murugan, S. An Artificial Neural Network and Genetic Algorithm Optimized Model for Biogas Production from Co-digestion of Seed Cake of Karanja and Cattle Dung. Waste Biomass Valoriz. 2015, 6, 1015–1027. [Google Scholar] [CrossRef]
- Oloko-Oba, M.I.; Taiwo, A.E.; Ajala, S.O.; Solomon, B.O.; Betiku, E. Performance evaluation of three different-shaped bio-digesters for biogas production and optimization by artificial neural network integrated with genetic algorithm. Sustain. Energy Technol. Assess. 2018, 26, 116–124. [Google Scholar] [CrossRef]
- Zareei, S.; Khodaei, J. Modeling and optimization of biogas production from cow manure and maize straw using an adaptive neuro-fuzzy inference system. Renew. Energy 2017, 114, 423–427. [Google Scholar] [CrossRef]
- Kana, E.G.; Oloke, J.; Lateef, A.; Adesiyan, M. Modeling and optimization of biogas production on saw dust and other co-substrates using Artificial Neural network and Genetic Algorithm. Renew. Energy 2012, 46, 276–281. [Google Scholar] [CrossRef]
- Akbaş, H.; Bilgen, B.; Turhan, A.M. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility. Bioresour. Technol. 2015, 196, 566–576. [Google Scholar] [CrossRef]
- Nasr, N.; Hafez, H.; Naggar, M.H.E.; Nakhla, G. Application of artificial neural networks for modeling of biohydrogen production. Int. J. Hydrogen Energy 2013, 38, 3189–3195. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, J.; Kana, E. Comparative Assessment of the Artificial Neural Network and Response Surface Modelling Efficiencies for Biohydrogen Production on Sugar Cane Molasses. BioEnergy Res. 2014, 7, 295–305. [Google Scholar] [CrossRef]
- Ren, J.; Gao, S.; Tan, S.; Dong, L. Prediction of the yield of biohydrogen under scanty data conditions based on GM (1, N). Int. J. Hydrogen Energy 2013, 38, 13198–13203. [Google Scholar] [CrossRef]
- Prakasham, R.; Sathish, T.; Brahmaiah, P. Imperative role of neural networks coupled genetic algorithm on optimization of biohydrogen yield. Int. J. Hydrogen Energy 2011, 36, 4332–4339. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Shamshirband, S.; Tabatabaei, M.; Yee, P.L.; Larimi, Y.N. The use of ELM-WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste. Energy 2016, 94, 443–456. [Google Scholar] [CrossRef]
- Ezzatzadegan, L.; Morad, N.A.; Yusof, R. Prediction and optimization of ethanol concentration in biofuel production using fuzzy neural network. J. Teknol. 2016, 78. [Google Scholar] [CrossRef] [Green Version]
- del Rio-Chanona, E.A.; Wagner, J.L.; Ali, H.; Fiorelli, F.; Zhang, D.; Hellgardt, K. Deep learning-based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design. AIChE J. 2019, 65, 915–923. [Google Scholar] [CrossRef] [Green Version]
- Ismail, H.M.; Ng, H.K.; Queck, C.W.; Gan, S. Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends. Appl. Energy 2012, 92, 769–777. [Google Scholar] [CrossRef]
- Sharon, H.; Jayaprakash, R.; Sundaresan, A.; Karuppasamy, K. Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network. Fuel 2012, 99, 197–203. [Google Scholar] [CrossRef]
- Javed, S.; Murthy, Y.S.; Baig, R.U.; Rao, D.P. Development of ANN model for prediction of performance and emission characteristics of hydrogen dual fueled diesel engine with Jatropha Methyl Ester biodiesel blends. J. Nat. Gas Sci. Eng. 2015, 26, 549–557. [Google Scholar] [CrossRef]
- Canakci, M.; Ozsezen, A.N.; Arcaklioglu, E.; Erdil, A. Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil. Expert Syst. Appl. 2009, 36, 9268–9280. [Google Scholar] [CrossRef]
- Oğuz, H.; Sarıtas, I.; Baydan, H.E. Prediction of diesel engine performance using biofuels with artificial neural network. Expert Syst. Appl. 2010, 37, 6579–6586. [Google Scholar] [CrossRef]
- Barma, S.; Das, B.; Giri, A.; Majumder, S.; Bose, A. Back propagation artificial neural network (BPANN) based performance analysis of diesel engine using biodiesel. J. Renew. Sustain. Energy 2013, 3, 013101. [Google Scholar] [CrossRef]
- Çelebi, K.; Uludamar, E.; Tosun, E.; Yıldızhan, Ş.; Aydın, K.; Özcanlı, M. Experimental and artificial neural network approach of noise and vibration characteristic of an unmodified diesel engine fuelled with conventional diesel, and biodiesel blends with natural gas addition. Fuel 2017, 197, 159–173. [Google Scholar] [CrossRef]
- Javed, S.; Baig, R.U.; Murthy, Y.S. Study on noise in a hydrogen dual-fuelled zinc-oxide nanoparticle blended biodiesel engine and the development of an artificial neural network model. Energy 2018, 160, 774–782. [Google Scholar] [CrossRef]
- Aydogan, H.; Altun, A.A.; Ozcelik, A.E. Performance analysis of a turbocharged diesel engine using biodiesel with back propagation artificial neural network. Energy Educ. Sci. Technol. Part A 2011, 28, 459–468. [Google Scholar]
- Shojaeefard, M.; Etghani, M.; Akbari, M.; Khalkhali, A.; Ghobadian, B. Artificial neural networks based prediction of performance and exhaust emissions in direct injection engine using castor oil biodiesel-diesel blends. J. Renew. Sustain. Energy 2012, 4, 063130. [Google Scholar] [CrossRef]
- Sharma, A.; Sahoo, P.K.; Tripathi, R.; Meher, L.C. Artificial neural network-based prediction of performance and emission characteristics of CI engine using polanga as a biodiesel. Int. J. Ambient Energy 2016, 37, 559–570. [Google Scholar] [CrossRef]
- Omidvarborna, H.; Kumar, A.; Kim, D. Artificial neural network prediction of NOx emissions from E GR and non-EGR engines running on soybean biodiesel fuel (B5) during cold idle mode. Environ. Prog. Sustain. Energy 2016, 35, 1537–1544. [Google Scholar] [CrossRef]
- Karthickeyan, V.; Balamurugan, P.; Rohith, G.; Senthil, R. Developing of ANN model for prediction of performance and emission characteristics of VCR engine with orange oil biodiesel blends. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 2877–2888. [Google Scholar] [CrossRef]
- Menon, P.R.; Krishnasamy, A. A composition-based model to predict and optimize biodiesel-fuelled engine characteristics using artificial neural networks and genetic algorithms. Energy Fuels 2018, 32, 11607–11618. [Google Scholar] [CrossRef]
- Ghobadian, B.; Rahimi, H.; Nikbakht, A.; Najafi, G.; Yusaf, T. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renew. Energy 2009, 34, 976–982. [Google Scholar] [CrossRef] [Green Version]
- Pai, P.S.; Rao, B.S. Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings. Appl. Energy 2011, 88, 2344–2354. [Google Scholar]
- Muralidharan, K.; Vasudevan, D. Applications of artificial neural networks in prediction of performance, emission and combustion characteristics of variable compression ratio engine fuelled with waste cooking oil biodiesel. J. Braz. Soc. Mech. Sci. Eng. 2015, 37, 915–928. [Google Scholar] [CrossRef]
- Najafi, B.; Faizollahzadeh Ardabili, S.; Mosavi, A.; Shamshirband, S.; Rabczuk, T. An intelligent artificial neural network-response surface methodology method for accessing the optimum biodiesel and diesel fuel blending conditions in a diesel engine from the viewpoint of exergy and energy analysis. Energies 2018, 11, 860. [Google Scholar] [CrossRef] [Green Version]
- Kannan, G.; Balasubramanian, K.; Anand, R. Artificial neural network approach to study the effect of injection pressure and timing on diesel engine performance fueled with biodiesel. Int. J. Automot. Technol. 2013, 14, 507–519. [Google Scholar] [CrossRef]
- Jaliliantabar, F.; Ghobadian, B.; Najafi, G.; Yusaf, T. Artificial neural network modeling and sensitivity analysis of performance and emissions in a compression ignition engine using biodiesel fuel. Energies 2018, 11, 2410. [Google Scholar] [CrossRef] [Green Version]
- Kurtgoz, Y.; Karagoz, M.; Deniz, E. Biogas engine performance estimation using ANN. Eng. Sci. Technol. Int. J. 2017, 20, 1563–1570. [Google Scholar] [CrossRef]
- Aydogan, H. Prediction of diesel engine performance, emissions and cylinder pressure obtained using Bioethanol-biodiesel-diesel fuel blends through an artificial neural network. J. Energy S. Afr. 2015, 26, 74–83. [Google Scholar] [CrossRef]
- Ilangkumaran, M.; Sakthivel, G.; Nagarajan, G. Artificial neural network approach to predict the engine performance of fish oil biodiesel with diethyl ether using back propagation algorithm. Int. J. Ambient Energy 2016, 37, 446–455. [Google Scholar] [CrossRef]
- Tosun, E.; Aydin, K.; Bilgili, M. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures. Alex. Eng. J. 2016, 55, 3081–3089. [Google Scholar] [CrossRef] [Green Version]
- Dharma, S.; Hassan, M.H.; Ong, H.C.; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Milano, J. Experimental study and prediction of the performance and exhaust emissions of mixed Jatropha curcas-Ceiba pentandra biodiesel blends in diesel engine using artificial neural networks. J. Clean. Prod. 2017, 164, 618–633. [Google Scholar] [CrossRef]
- Najafi, B.; Akbarian, E.; Lashkarpour, S.M.; Aghbashlo, M.; Ghaziaskar, H.S.; Tabatabaei, M. Modeling of a dual fueled diesel engine operated by a novel fuel containing glycerol triacetate additive and biodiesel using artificial neural network tuned by genetic algorithm to reduce engine emissions. Energy 2019, 168, 1128–1137. [Google Scholar] [CrossRef]
- Ozgur, T.; Tuccar, G.; Ozcanli, M.; Aydin, K. Prediction of emissions of a diesel engine fueled with soybean biodiesel using artificial neural networks. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2011, 27, 301–312. [Google Scholar]
- ZareNezhad, B.; Aminian, A. Accurate prediction of surface tension of biodiesel fuels at different operating conditions using a neuro-fuzzy model. J. Mol. Liq. 2015, 207, 206–210. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Mudgal, A.; Hallmark, S. Neuro-fuzzy approach to predictive modeling of emissions from biodiesel powered transit buses. Transport 2011, 26, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Mostafaei, M. ANFIS models for prediction of biodiesel fuels cetane number using desirability function. Fuel 2018, 216, 665–672. [Google Scholar] [CrossRef]
- Sakthivel, G.; Sivaraja, C.; Ikua, B.W. Prediction OF CI engine performance, emission and combustion parameters using fish oil as a biodiesel by fuzzy-GA. Energy 2019, 166, 287–306. [Google Scholar] [CrossRef]
- Sakthivel, G. Prediction of CI engine performance, emission and combustion characteristics using fish oil as a biodiesel at different injection timing using fuzzy logic. Fuel 2016, 183, 214–229. [Google Scholar] [CrossRef]
- Debnath, R.; Sastry, G.R.K.; Rai, R.N. An experimental investigation of performance and emission of thumba biodiesel using butanol as an additive in an IDI CI engine and analysis of results using multi-objective fuzzy-based genetic algorithm. Environ. Sci. Pollut. Res. 2019, 26, 2281–2296. [Google Scholar] [CrossRef] [PubMed]
- Ardabili, S.; Najafi, B.; Shamshirband, D. Fuzzy Logic Method for the prediction of cetane number using carbon number, double bounds, iodic and saponification values of biodiesel fuels. Environ. Progress Sustain. Energy 2019, 38, 584–599. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Sebayang, A.H.; Dharma, S.; Kusumo, F.; Siswantoro, J.; Milano, J.; Daud, K.; Mahlia, T.M.I.; et al. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy 2018, 159, 1075–1087. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Hassan, M.H.; Ong, H.C.; Kusumo, F. palm oil methyl ester blends as biodiesel. Environ. Sci. Pollut. Res. 2017, 24, 25383–25405. [Google Scholar] [CrossRef]
- Wong, P.K.; Wong, K.I.; Vong, C.M.; Cheung, C.S. Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew. Energy 2015, 74, 640–647. [Google Scholar] [CrossRef]
- Wong, K.I.; Wong, P.K. Optimal calibration of variable biofuel blend dual-injection engines using sparse Bayesian extreme learning machine and metaheuristic optimization. Energy Convers. Manag. 2017, 148, 1170–1178. [Google Scholar] [CrossRef]
- Wong, K.I.; Wong, P.K.; Cheung, C.S.; Vong, C.M. Modeling and optimization of biodiesel engine performance using advanced machine learning methods. Energy 2013, 55, 519–528. [Google Scholar] [CrossRef]
- Wong, K.I.; Vong, C.M.; Wong, P.K.; Luo, J. Sparse Bayesian extreme learning machine and its application to biofuel engine performance prediction. Neurocomputing 2015, 149, 397–404. [Google Scholar] [CrossRef]
- Alves, J.C.L.; Poppi, R.J. Biodiesel content determination in diesel fuel blends using near infrared (NIR) spectroscopy and support vector machines (SVM). Talanta 2013, 104, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maheshwari, N.; Balaji, C.; Ramesh, A. A nonlinear regression based multi-objective optimization of parameters based on experimental data from an IC engine fueled with biodiesel blends. Biomass Bioenergy 2011, 35, 2171–2183. [Google Scholar] [CrossRef]
- Shamshirband, S.; Tabatabaei, M.; Aghbashlo, M.; Yee, L.; Petković, D. Support vector machine-based exergetic modelling of a DI diesel engine running on biodiesel–diesel blends containing expanded polystyrene. Appl. Therm. Eng. 2016, 94, 727–747. [Google Scholar] [CrossRef]
Categories | Keywords Used for Search in the Databases |
---|---|
Machine Learning | artificial neural networks | boosting | data-based | data-driven | decision tree | deep learning | dimensionality reduction algorithms | discriminant analysis | ensemble learning | estimation | extreme learning machine | genetic algorithm | inference | kNN | K-Means | least-squares | logistic regression | linear regression | machine learning | moving average | multi layered perception | Naive Bayes | neuro fuzzy | partial least squares | principal component analysis | prediction | random forest(s) | soft sensor | support vector machine | virtual sensor |
Biofuels | bioalcohol | biodiesel | bioethers | biofuels | biogas | biohydrogen | dimethylfuran | green diesel |
Soil | drone | land | land image | satellite | soil | surveillance |
Feedstock | algae and aquatic biomass | biomass | biosolid(s) | corn | energy cane | feed | feedstock | forest thinning | high biomass sorghum | hybrid poplars | industrial waste gases | logging residues | lignocellulosic crops | lignocellulosic residues | manure slurries | micro algae | miscanthus | municipal waste | oil-based residues | oil crops | organic residues | plant | plastics | raw material(s) | shrub willows | sludge | starch crops | sugar crops | sweet sorghum | switch grass | vegetable oil | waste | waste food | waste gases |
Production | catalytic synthesis | distillation | drying | fermentation | gas cleaning | gasification | operation | process | product | production | reactor | refining | unit | water gas shift | yield |
Consumption & emissions | air pollution | carbon emission | emission | energy potential | engine | environment | exhaust gases | fuel consumption | fuel quality | fuel use | green house gases | greenhouse | mileage |
ML Method | Input Variables | Output Variables | Error Range | References |
---|---|---|---|---|
Linear Mixed-Effects (LME) regression, Random Forest (RF), Support Vector Regression (SVR) | Tree Crowns | Biomass estimation | [19] | |
Extremely Randomized Trees (ERT), Random Forest (RF) model | Average precipitation, temperature, solar radiation, atmospheric CO2, wind speed | Sorghum biomass yield | [20] | |
Partial Least Square Discriminant Analysis (PLS-DA), Principal Component Analysis Discriminant Analysis (PCA-DA), Neural Network (NN), Random Forest (RF), Support Vector Machine (SVM) with Linear Classifier (SVML), SVM with Nonlinear Kernel (SVML), SVM with Radial basis Kernel (SVM), SVM with Radial basis Kernel with Polynomial basis Kernel (SVM), eXtreme Gradient Boosting- xgbtree method (GBT), eXtreme Gradient Boosting-xgb DART method (GBD), eXtreme Gradient Boosting-xgb Linear method (GBL), simple linear model (LM) | Saponification value, iodine value and the poly unsaturated fatty acids content of feedstock | Sorghum biomass yield | R2 ≥ 0.50 | [21] |
Boosted Regression Tree (BRT) | Climate, soil characteristics, farming practices | Future life-cycle environmental impacts of corn production | 0.7800 ≤ R2 ≤ 0.8200 | [22] |
Random Forest Model (RFM) | Average temperature, average precipitation, slope, soil characteristics, diurnal temperature | Crop yield | 0.8300 ≤ R2 ≤ 0.9000 | [23] |
ML Method | Input Variables | Output Variables | Error Range | References |
---|---|---|---|---|
ANN, Statistical Regression Model (SRM) | Fractions of sluges of paper, chemical, petrochemical, automobile, food industries | Specific methane yield | 0.7300 ≤ R2 ≤ 0.9900 | [24] |
Multiple Linear Regressions | Saponification value, iodine value and the polyunsaturated fatty acids content of feedstock | Biodiesel’s viscosity, density, Flash Point (FP), Higher Heating Value (HHV) and oxidative stability | R2 = 0.9900 | [25] |
ANN | Palmitic, stearic, oleic, linoleic, linolenic acids, temperature | Cetane Number (CN), Flash Point (FP), Kinematic Viscosity (KV) and density of biodiesel | R = 0.958 | [26] |
ANN, MNLR | Biodiesel content, aging temperature | Apparent viscosity, plastic viscosity and yield | 0.9960 ≤ R2 ≤ 0.9970 | [27] |
Single and Multiple Regression Model | Chemical composition of the biomass | Methane yield | R2 = 0.6300 | [28] |
Naive Bayes, RF, ANN | Microscopic features of samples of microalgae cells | Classification of microalgae cells | Correlation coefficient = 0.9950 | [29] |
MLR, RF | Biomass compositions, pyrolysis conditions | Yield, hydrogen of bio-oil | 0.1660 ≤ R2 ≤ 0.9200 | [30] |
SVR-based model | Bacterial biomass, dimensionality of differetial thermogravimetric (DTG) | Thermal characteristics of biomasses: enthalpy change, Gibb’s free energy, entropy change and high heating value | R2 = 0.9999 | [31] |
LRA and stochastic gradient descent (SGD) | 78 lines of combined proximate and ultimate analysis data | High heating value of biomass | R2 = 0.9999 | [32] |
ANN, GA | Glycerol, NH4Cl, MgSO4, KH2PO4 | Lipid yield | [33] | |
RF | The feedstock compositions, reaction temperature, resistance time, and heating rate | yield and quality | 0.7800 ≤ R2 ≤ 0.8700 | [34] |
MLR, regression tree (RT), and RF | Feedstocks’ characteristics, reaction temperature, reaction time, and initial concentration | Biocrude, hydrochar, gas, and aqueous co-product | 0.1600 ≤ R2 ≤ 0.9000 | [35] |
Production Process | Purpose | ML Method Ranking | Input Variables Ranking | Error Range | References |
---|---|---|---|---|---|
Biodiesel | Quality estimation | ANN (2), Least Squares Boosting (LSBoost) integrated with polynomial chaos expansion (PCE) method, regression models, principle component analysis | Reaction temperature (4), reaction time (2), metal ratio, and calcination temperature, flow rate, pressure, reactor residence time, reflux rate, oil fraction, methanol-to-oil molar ratio, catalyst concentration | 0.5960 ≤ R2 ≤ 0.9976 | [36,37,38,39,40] |
Yield estimation | ANN (11), ANFIS (2), Linear Regression (LR) | Temperature (11), methanol-to-oil molar ratio (10), catalyst concentration (9), reaction time (7), organic loading rate, influent–effluent pH, H22SO4 concentration, total volatile fatty acid (VFA) of the effluent, xylose, influent–effluent alkalinity, initial pH, pressure, reactor diameter, liquid height and ultrasound intensity | 0.3500 ≤ R2 ≤ 0.9978 | [41,42,43,44,45,46,47,48,49,50,51] | |
Quality and yield optimization | ANN-GA (9), genetic algorithm-based support vector machines (3), ANFIS-GA (2), multi-objective genetic algorithm (2), multivariate regression analysis, ELM-RSM, GA-LSSVM, HGAPSO-LSSVM, multi-objective optimization with Orthogonal collocation on finite elements (OCFE) method | Methanol-to-oil molar ratio (15), reaction temperature (14), reaction time (13), stirring speed (6), catalyst concentration (6), catalyst weight (5), dosage of NaOH catalyst (3), humidity (3), impurities (3), mixing time (3), Free Fatty Acid (FFA) content, sulfuric acid-to-rice bran ratio, duty-cycle, methanol-to-rice bran ratio, FAME concentration, overall heat duty, initial acid value of vegetable oil, calcination temperature, reactor’s residence time, and pressure | 0.8690 ≤ R2 ≤ 0.9999 | [52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67] | |
Estimation and optimization of process conditions and efficiency | ANN (3), multi-objective optimization program with genetic algorithm (2), ANFIS, Artificial Linear Interdependent Fuzzy Multi-Objective Optimization (ALFIMO), Multivariate Curve Resolution Alternative Least Square (MCR-ALS), Group Interaction Parameters (GIP) with GA, and Extreme Learning Machine (ELM) with Lyapunov analysis | Reaction temperature (3), concentration (2), water content and reaction time (2), methanol-to-oil molar ratio (2), residence time, vapor pressure, heat capacity, liquid molar volume, and liquid viscosity, ethanol-to-oil molar ratio, heat of vaporization, initial CO2 pressure, pH, reaction time, reaction temperature, metal ratio, heat of formation, calcination temperature, and phase equilibrium | 0.6580 ≤ R2 ≤ 0.9990 | [36,68,69,70,71,72,73,74,75,76,77,78] | |
Biogas | Quality estimation | ANN (2), ANFIS, and multiple regression model | total solids, fixed solids, volatile solids, Volatile fatty acids (VFAs), pH, inflow rate, COD, ammonia (NH4), pH, total dissolved solids (TDS), total Kjeldahl nitrogen (TKN), alkalinity (Alk), chloride (Cl), conductivity (Cond), and total phosphorus (TP) | 0.7500 ≤ R2 ≤ 0.9200 | [79,80,81] |
Yield estimation | ANN (5), Multiple Non-Linear Regression (MNLR) models, and Partial Least Squares Regression (PLS-R) | pH (3), temperature (2), Total Volatile Solids (TVS) (2), Volatile Fatty Acids (VFAs) (2), composition, time, Moisture Content (MC), and CH4, total Kjeldahl nitrogen, total Chemical Oxygen Demand (COD), total phosphorus, hydraulic retention time, ammonium, alkalinity, instrument measurements (FFT acoustic spectra), and Total Solids (TS) | 0.8700 ≤ R2 ≤ 0.9983 | [82,83,84,85,86] | |
Estimation of process performance, and optimization of quality and yield | ANN-GA (5), ANFIS | Total Solids (TS) (2), pH (2), temperature (2) digestion time and C-to-N ratio (2), cow dung (2), retention time, Total Volatile Solids (TVS), organic loading rate, duty cycle, mass of poultry droppings, plantain peel, piggery waste, stirring intensity of substrates, paper waste, banana stem, saw dust, and rice bran | 0.8700 ≤ R2 ≤ 0.9900 | [86,87,88,89,90,91,92] | |
Biohydrogen | Yield estimation | ANN (3), hybrid fuzzy clustering-ranking approach with ANN, gray model | Biomass concentrations (5), pH (4), substrate (2), temperature (2), time, agitation speed and flow rate | 0.7500 ≤ R2 ≤ 0.9999 | [93,94,95,96,97] |
Miscellaneous | Bioethanol yield estimation and optimization | Fuzzy Neural Network (FNN) and PSO | Temperature, glucose content, and fermentation time | R2 = 0.9900 | [98] |
Bisabolene yield estimation and optimization | Convolutional neural networks-based multi-objective optimization with hybrid stochastic search optimization algorithm: random search (RS), PSO and SA | Incident light intensity, recycling gas flow rate, number of holes, diameter of holes, and cardinal coordinates of sample | mean error < 1% | [99] |
Types of ML Methods | Input Variables | Error Range | References |
---|---|---|---|
ANN | Biofuel blend (22), engine speed (15), load (11), cetane number (4), output torque (3), density of fuels (3), compression ratios (3), intake air temperature (2), EPS content (2), lower heating value (2), CO2, hydrogen flow rates, percent fuel for non-EGR engine, H2, brake power, nano size, rpm, CNG flow rate, specific gravity, average molecular weight, net heat of combustion, Kinematic Viscosity (KV), time, fuel temperature, C-to-H ratio, engine crank angle, performance of a compression ignition engine, compression ratio, injection timing, CH4 ratio of the fuel, maximum cylinder pressure, pilot fuel and natural gas consumption, Air-to-Fuel Ratio (AFR) exhaust emissions, exhaust temperature values, smoke, HC, CO, fuel mass flow rate, injection pressure, and throttle position, biodiesel volume, and NOx | 0.5420 ≤ R2≤ 0.9990 | [100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126] |
ANFIS | Double bonds (3), blend (3), load (3), injection timings, SV, IV, molar weight, speed, acceleration, rpm, VSP, passenger count, MAP, temperature, the average carbon numbers (2) | 0.9440 ≤ R2≤ 0.9990 | [127,128,129,130,131,132,133] |
Extreme learning method | Biodiesel ratio (5), engine speed (5), fuel consumption (5) engine torque (3), concentrations of the emissions (3), idle air valve normal position (2), fuel injection time (2), ignition advance, throttle position, carbon monoxide, nitrogen oxide, smoke opacity, brake thermal efficiency, combustion characteristics, exhaust emissions, performance, and the Air-to-Fuel Ratio (AFR) | [134,135,136,137,138,139] | |
Support vector machine (SVM) algorithm, PLS, and nonlinear regression | Composition, injection timing (I), power (P), and blend ratio (B) | 0.9500 ≤ R2≤ 0.9970 | [140,141,142] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Sana, A.; Kano, M.; Cheema, I.I.; Menezes, B.C.; Shahzad, J.; Ullah, Z.; Khan, M.; Habib, A. Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions. Energies 2021, 14, 5072. https://doi.org/10.3390/en14165072
Ahmad I, Sana A, Kano M, Cheema II, Menezes BC, Shahzad J, Ullah Z, Khan M, Habib A. Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions. Energies. 2021; 14(16):5072. https://doi.org/10.3390/en14165072
Chicago/Turabian StyleAhmad, Iftikhar, Adil Sana, Manabu Kano, Izzat Iqbal Cheema, Brenno C. Menezes, Junaid Shahzad, Zahid Ullah, Muzammil Khan, and Asad Habib. 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions" Energies 14, no. 16: 5072. https://doi.org/10.3390/en14165072
APA StyleAhmad, I., Sana, A., Kano, M., Cheema, I. I., Menezes, B. C., Shahzad, J., Ullah, Z., Khan, M., & Habib, A. (2021). Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions. Energies, 14(16), 5072. https://doi.org/10.3390/en14165072