Generalization Capability of Convolutional Neural Networks for Progress Variable Variance and Reaction Rate Subgrid-Scale Modeling
Abstract
:1. Introduction
2. Combustion Modeling Framework
2.1. Pfitzner Source Term
2.2. Pfitzner Beta PDF Closure for the Filtered Reaction Rate
2.3. Algebraic SGS Variance Models
2.4. Convolutional Neural Networks for SGS Variance Modeling
- The profile of the field in the neighboring flame brush;
- The amount of unresolved SGS scales;
- The effect of local turbulence on the SGS distribution of c.
- A CNN is used because of its ability to accurately learn spatial patterns in an extended area around a location of interest (Section 4.1);
- the flame fronts seen in the training and evaluation contexts belong to the same turbulent combustion regime (Section 3.1 and Section 3.2);
- DNS snapshots are filtered and downsampled to a coarse grid with a well-chosen resolution (Section 4.2).
3. Training and Generalization Flow Configurations
3.1. Training Configuration: Planar Flame in Homogeneous Isotropic Turbulence
3.2. Generalization Configuration: R2 Slot Burner Jet Flame
3.3. Comments on the Differences and Similarities between the Two Configurations
4. Machine Learning Framework
4.1. U-Net Architecture
- A 3D convolution with a kernel with “same” padding;
- A batch normalization layer [57];
- A rectified linear unit (ReLU) nonlinear activation unit;
- A max-pooling downsampling operation in the encoder or a upsampling operation in the decoder.
4.2. Data Preparation
4.3. Training Procedure
5. A Priori Evaluation of the Model
5.1. Evaluation on the HIT Test Set
5.2. Evaluation on the R2 Generalization Set
5.3. Discussion on the Conditions for Generalization
6. A Priori Evaluation of the PB-CNN Model for
6.1. Evaluation on the HIT Test Set
6.2. Evaluation on the R2 Generalization Set
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
DNS | Direct Numerical Simulation |
HIT | Homogeneous Isotropic Turbulence |
LES | Large Eddy Simulation |
PB-CNN | Pfitzner Beta PDF CNN |
Probability Density Function | |
ReLU | Rectified Linear Unit |
SGS | Subgrid-Scale |
References
- Yellapantula, S.; Perry, B.A.; Grout, R.W. Deep learning-based model for progress variable dissipation rate in turbulent premixed flames. Proc. Combust. Inst. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- de Frahan, M.T.H.; Yellapantula, S.; King, R.; Day, M.S.; Grout, R.W. Deep learning for presumed probability density function models. Combust. Flame 2019, 208, 436–450. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.X.; Iavarone, S.; Ghiasi, G.; Kannan, V.; D’Alessio, G.; Parente, A.; Swaminathan, N. Application of machine learning for filtered density function closure in MILD combustion. Combust. Flame 2021, 225, 160–179. [Google Scholar] [CrossRef]
- Lapeyre, C.J.; Misdariis, A.; Cazard, N.; Veynante, D.; Poinsot, T. Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. Combust. Flame 2019, 203, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Wang, H.; Luo, K.; Fan, J. A priori assessment of convolutional neural network and algebraic models for flame surface density of high Karlovitz premixed flames. Phys. Fluids 2021, 33, 036111. [Google Scholar] [CrossRef]
- Seltz, A.; Domingo, P.; Vervisch, L.; Nikolaou, Z.M. Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks. Combust. Flame 2019, 210, 71–82. [Google Scholar] [CrossRef]
- Wan, K.; Barnaud, C.; Vervisch, L.; Domingo, P. Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects. Combust. Flame 2020, 220, 119–129. [Google Scholar] [CrossRef]
- Nikolaou, Z.M.; Chrysostomou, C.; Vervisch, L.; Cant, S. Progress Variable Variance and Filtered Rate Modelling Using Convolutional Neural Networks and Flamelet Methods. Flow Turbul. Combust. 2019, 103, 485–501. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Chen, J.H. Petascale direct numerical simulation of turbulent combustion—Fundamental insights towards predictive models. Proc. Combust. Inst. 2011, 33, 99–123. [Google Scholar] [CrossRef]
- Poinsot, T.; Veynante, D. Theoretical and Numerical Combustion, 3rd ed.; 2011; Available online: www.cerfacs.fr/elearning (accessed on 1 July 2021).
- Moureau, V.; Domingo, P.; Vervisch, L. From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling. Combust. Flame 2011, 158, 1340–1357. [Google Scholar] [CrossRef]
- Langella, I.; Swaminathan, N. Unstrained and strained flamelets for LES of premixed combustion. Combust. Theory Model. 2016, 20, 410–440. [Google Scholar] [CrossRef] [Green Version]
- Klimenko, A.Y.; Bilger, R.W. Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 1999, 25, 595–687. [Google Scholar] [CrossRef]
- Pfitzner, M.; Klein, M. A near-exact analytic solution of progress variable and pdf for single-step Arrhenius chemistry. Combust. Flame 2021, 226, 380–395. [Google Scholar] [CrossRef]
- Pfitzner, M. A New Analytic pdf for Simulations of Premixed Turbulent Combustion. Flow Turbul. Combust. 2021, 106, 1213–1239. [Google Scholar] [CrossRef]
- Pope, S.B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1997, 1, 41–63. [Google Scholar] [CrossRef]
- Fiorina, B.; Vicquelin, R.; Auzillon, P.; Darabiha, N.; Gicquel, O.; Veynante, D. A filtered tabulated chemistry model for LES of premixed combustion. Combust. Flame 2010, 157, 465–475. [Google Scholar] [CrossRef] [Green Version]
- van Oijen, J.A.; Donini, A.; Bastiaans, R.J.; ten Thije Boonkkamp, J.H.; de Goey, L.P. State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Prog. Energy Combust. Sci. 2016, 57, 30–74. [Google Scholar] [CrossRef] [Green Version]
- Bray, K.N.C. Studies of the turbulent burning velocity. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1990, 431, 315–335. [Google Scholar] [CrossRef]
- Cook, A.W.; Riley, J.J. A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 1994, 6, 2868–2870. [Google Scholar] [CrossRef]
- Bray, K.N.; Champion, M.; Libby, P.A.; Swaminathan, N. Finite rate chemistry and presumed PDF models for premixed turbulent combustion. Combust. Flame 2006, 146, 665–673. [Google Scholar] [CrossRef]
- Proch, F.; Kempf, A.M. Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame 2014, 161, 2627–2646. [Google Scholar] [CrossRef]
- Langella, I.; Swaminathan, N.; Williams, F.A.; Furukawa, J. Large-Eddy Simulation of Premixed Combustion in the Corrugated-Flamelet Regime. Combust. Sci. Technol. 2016, 188, 1565–1591. [Google Scholar] [CrossRef] [Green Version]
- Veynante, D.; Knikker, R. Comparison between LES results and experimental data in reacting flows. J. Turbul. 2006, 7, 1–20. [Google Scholar] [CrossRef]
- Knudsen, E.; Kim, S.H.; Pitsch, H. An analysis of premixed flamelet models for large eddy simulation of turbulent combustion. Phys. Fluids 2010, 22, 115109. [Google Scholar] [CrossRef]
- Pierce, C.D.; Moin, P. A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 1998, 10, 3041–3044. [Google Scholar] [CrossRef]
- Balarac, G.; Pitsch, H.; Raman, V. Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators. Phys. Fluids 2008, 20, 035114. [Google Scholar] [CrossRef]
- Vreman, A.W.; Bastiaans, R.J.; Geurts, B.J. A similarity subgrid model for premixed turbulent combustion. Flow Turbul. Combust. 2009, 82, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, R.; Muralidharan, B.; Nagaoka, Y.; Menon, S. Subgrid-Scale Modeling of Reaction-Diffusion and Scalar Transport in Turbulent Premixed Flames. Combust. Sci. Technol. 2016, 188, 1496–1537. [Google Scholar] [CrossRef] [Green Version]
- Keil, F.B.; Klein, M.; Chakraborty, N. Sub-grid Reaction Progress Variable Variance Closure in Turbulent Premixed Flames. Flow Turbul. Combust. 2021, 106, 1195–1212. [Google Scholar] [CrossRef] [Green Version]
- Wall, C.; Boersma, B.J.; Moin, P. An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of nonpremixed, turbulent combustion with heat release. Phys. Fluids 2000, 12, 2522–2529. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Van Oijen, J.A.; De Goey, L.P. A comparative study of presumed PDFs for premixed turbulent combustion modeling based on progress variable and its variance. Fuel 2015, 159, 728–740. [Google Scholar] [CrossRef]
- Lilly, D.K. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A Fluid Dyn. 1992, 4, 633–635. [Google Scholar] [CrossRef]
- Domingo, P.; Vervisch, L.; Payet, S.; Hauguel, R. DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 2005, 143, 566–586. [Google Scholar] [CrossRef]
- Domingo, P.; Vervisch, L.; Veynante, D. Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 2008, 152, 415–432. [Google Scholar] [CrossRef]
- Nilsson, T.; Langella, I.; Doan, N.A.K.; Swaminathan, N.; Yu, R.; Bai, X.S. A priori analysis of sub-grid variance of a reactive scalar using DNS data of high Ka flames. Combust. Theory Model. 2019, 23, 885–906. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, P.W.; Hamrick, J.B.; Bapst, V.; Sanchez-Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro, A.; Faulkner, R.; et al. Relational inductive biases, deep learning, and graph networks. arXiv 2018, arXiv:1806.01261. [Google Scholar]
- Zhang, C.; Bengio, S.; Hardt, M.; Mozer, M.C.; Singer, Y. Identity Crisis: Memorization and Generalization Under Extreme Overparameterization. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Boger, M.; Veynante, D.; Boughanem, H.; Trouvé, A. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symp. Int. Combust. 1998, 27, 917–925. [Google Scholar] [CrossRef]
- Charlette, F.; Meneveau, C.; Veynante, D. A power-law wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combust. Flame 2002, 131, 159–180. [Google Scholar] [CrossRef]
- Chakraborty, N.; Cant, R.S. Effects of Lewis number on scalar transport in turbulent premixed flames. Phys. Fluids 2009, 21, 1–12. [Google Scholar] [CrossRef]
- Poinsot, T.J.; Lele, S.K. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 1992, 101, 104–129. [Google Scholar] [CrossRef]
- Quillatre, P.; Vermorel, O.; Poinsot, T.; Ricoux, P. Large eddy simulation of vented deflagration. Ind. Eng. Chem. Res. 2013, 52, 11414–11423. [Google Scholar] [CrossRef]
- Bailly, C.; Juvé, D. A stochastic approach to compute subsonic noise using linearized euler’s equations. In Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, Reston, VA, USA, 10–12 May 1999; pp. 496–506. [Google Scholar] [CrossRef] [Green Version]
- Schönfeld, T.; Rudgyard, M. Steady and unsteady flow simulations using the hybrid flow solver AVBP. AIAA J. 1999, 37, 1378–1385. [Google Scholar] [CrossRef]
- Selle, L.; Lartigue, G.; Poinsot, T.; Koch, R.; Schildmacher, K.U.; Krebs, W.; Prade, B.; Kaufmann, P.; Veynante, D. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 2004, 137, 489–505. [Google Scholar] [CrossRef]
- Colin, O.; Rudgyard, M. Development of High-Order Taylor-Galerkin Schemes for LES. J. Comput. Phys. 2000, 162, 338–371. [Google Scholar] [CrossRef]
- Luca, S.; Attili, A.; Bisetti, F. Direct Numerical Simulation of Turbulent Lean Methane-Air Bunsen Flames with Mixture Inhomogeneities. In Proceedings of the 54th AIAA Aerospace Sciences Meeting AIAA, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Luca, S.; Al-Khateeb, A.N.; Attili, A.; Bisetti, F. Comprehensive Validation of Skeletal Mechanism for Turbulent Premixed Methane–Air Flame Simulations. J. Propuls. Power 2017, 34, 153–160. [Google Scholar] [CrossRef]
- Luca, S.; Attili, A.; Lo Schiavo, E.; Creta, F.; Bisetti, F. On the statistics of flame stretch in turbulent premixed jet flames in the thin reaction zone regime at varying Reynolds number. Proc. Combust. Inst. 2019, 37, 2451–2459. [Google Scholar] [CrossRef]
- Peters, N. Laminar flamelet concepts in turbulent combustion. Symp. Int. Combust. 1988, 21, 1231–1250. [Google Scholar] [CrossRef]
- Peters, N. The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 1999, 384, 107–132. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9351, pp. 234–241._28. [Google Scholar] [CrossRef] [Green Version]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-net: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; pp. 424–432._49. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–11._1. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015; Volume 1, pp. 448–456. [Google Scholar]
- Ajuria, E.; Alguacil, A.; Bauerheim, M.; Misdariis, A.; Cuenot, B.; Benazera, E. Towards a hybrid computational strategy based on deep learning for incompressible flows. In Proceedings of the AIAA AVIATION 2020 FORUM, Virtual, 15–19 June 2020; pp. 1–17. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Vermorel, O.; Quillatre, P.; Poinsot, T. LES of explosions in venting chamber: A test case for premixed turbulent combustion models. Combust. Flame 2017, 183, 207–223. [Google Scholar] [CrossRef] [Green Version]
/ | 352 | / | 18 | 0.48 | 14 | 450 | 82 |
HIT | R2 | |
---|---|---|
Fuel | ||
Reactions | 1 | 72 |
Species | 5 | 16 |
1 | 0.7 | |
T | 300 | 800 |
P | 1 bar | 4 bar |
0.383 | 1 / | |
352 | 85 | |
36 | 20 |
Model | ||
---|---|---|
CNN | 0.060 | 0.054 |
CST | 0.417 | 0.733 |
DYN | 0.398 | 0.730 |
Model | ||
---|---|---|
CNN | 0.241 | 0.214 |
CST | 0.371 | 0.331 |
DYN | 0.358 | 0.322 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, V.; Lapeyre, C.; Jaravel, T.; Poinsot, T. Generalization Capability of Convolutional Neural Networks for Progress Variable Variance and Reaction Rate Subgrid-Scale Modeling. Energies 2021, 14, 5096. https://doi.org/10.3390/en14165096
Xing V, Lapeyre C, Jaravel T, Poinsot T. Generalization Capability of Convolutional Neural Networks for Progress Variable Variance and Reaction Rate Subgrid-Scale Modeling. Energies. 2021; 14(16):5096. https://doi.org/10.3390/en14165096
Chicago/Turabian StyleXing, Victor, Corentin Lapeyre, Thomas Jaravel, and Thierry Poinsot. 2021. "Generalization Capability of Convolutional Neural Networks for Progress Variable Variance and Reaction Rate Subgrid-Scale Modeling" Energies 14, no. 16: 5096. https://doi.org/10.3390/en14165096
APA StyleXing, V., Lapeyre, C., Jaravel, T., & Poinsot, T. (2021). Generalization Capability of Convolutional Neural Networks for Progress Variable Variance and Reaction Rate Subgrid-Scale Modeling. Energies, 14(16), 5096. https://doi.org/10.3390/en14165096