Investigating Air-Cathode Microbial Fuel Cells Performance under Different Serially and Parallelly Connected Configurations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactors Design and Development
2.2. Substrate Preparation
2.3. Biofilm Development and Bacteria Acclimation
- i.
- Anode pretreatment: the anode is pretreated by soaking it into 0.5 M hydrochloric acid for 3 h; then the anode is rinsed with distilled water, as to suggest in ref. [20].
- ii.
- Anode incubation: the anode is incubated for 30 days at 30 °C in a solution consisting of Compost and sodium acetate.
- iii.
- Reactor assembly: the reactor is assembled by accurately inserting the electrodes and filled with the prepared substrate (OCV condition); for assuring that the MFCs work in anaerobic conditions, the substrate must cover completely the anode.
- iv.
- OCV and acclimation: the reactor is kept in OCV condition for 48 h before starting with the acclimation phase, in which different resistances, in the range 2200–33,000 Ω, are applied during a period of about 10–15 days. Before changing the resistance, the OCV is monitored and measured. This phase will conclude when the OCV will reach a value higher than 550 mV. This procedure allows to “train” the electrogenic bacteria in releasing the electrons to the anode and to work effectively under different voltages conditions. Results of the acclimation phase on the single cell are summarized in Table 3.
3. MFC Configurations
3.1. In Series Connected Stack
3.2. In Parallel Connected Stack
3.3. In Series/Parallel Connected Stack
3.4. In Parallel/Series Connected Stack
3.5. Multi-Electrode MFC Configuration
4. MFC Testing Procedure
- -
- Test 1: the polarization curves for each configuration have been performed at the end of the acclimation phase; tests have been carried out according to the monocyclic method reported in ref. [25], which consists of applying decreasing resistances every 5 min and measuring the average output voltage.
- -
- -
- Test 3: the electric energy production (µWh) has been estimated by measuring the electricity produced over time by applying a fixed external resistance; in particular, this resistance, which is different for each configuration, refers to that at which the maximum electric power is achieved.
5. Results
5.1. TEST 1
5.2. TEST 2
5.3. TEST 3
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moqsud, M.A.; Omine, K.; Yasufuku, N.; Hyodo, M.; Nakata, Y. Microbial fuel cell (MFC) for bioelectricity generation from organic wastes. Waste Manag. 2013, 33, 2465–2469. [Google Scholar] [CrossRef] [PubMed]
- Borello, D.; Gagliardi, G.; Aimola, G.; Ancona, V.; Grenni, P.; Bagnuolo, G.; Garbini, G.L.; Rolando, L.; Caracciolo, A.B. Use of microbial fuel cells for soil remediation: A preliminary study on DDE. Int. J. Hydrogen Energy 2021, 46, 10131–10142. [Google Scholar] [CrossRef]
- Casula, E.; Kim, B.; Chesson, H.; Di Lorenzo, M.; Mascia, M. Modelling the influence of soil properties on performance and bioremediation ability of a pile of soil microbial fuel cells. Electrochim. Acta 2021, 368, 137568. [Google Scholar] [CrossRef]
- Frattini, D.; Falcucci, G.; Minutillo, M.; Ferone, C.; Cioffi, R.; Jannelli, E. On the effect of different configurations in air-cathode MFCs fed by composite food waste for energy harvesting. Chem. Eng. Trans. 2016, 49, 85–90. [Google Scholar] [CrossRef]
- Walter, X.A.; Santoro, C.; Greenman, J.; Ieropoulos, I. Scaling up self-stratifying supercapacitive microbial fuel cell. Int. J. Hydrogen Energy 2020, 45, 25240–25248. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cheng, S.; Huang, L.; Logan, B.E. Scale-up of membrane-free single-chamber microbial fuel cells. J. Power Sources 2008, 179, 274–279. [Google Scholar] [CrossRef]
- Ahn, Y.; Logan, B.E. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Appl. Microbiol. Biotechnol. 2012, 93, 2241–2248. [Google Scholar] [CrossRef]
- Aelterman, P.; Rabaey, K.; Pham, H.T.; Boon, N.; Verstraete, W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006, 40, 3388–3394. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Zhou, X.; Liang, P.; Zhang, X.; Jiang, Y.; Huang, X. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res. 2016, 98, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Arriaga, E.B.; Guillen-Alonso, Y.; Morales-Morales, C.; García-Sánchez, L.; Bahena-Bahena, E.O.; Guadarrama-Pérez, O.; Loyola-Morales, F. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production. Water Sci. Technol. 2017, 76, 683–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tominaga, M.; Ototani, S.; Darmawan, R. The effect of connection type in series and parallel on electric power generation of mud microbial fuel cell. In Proceedings of the International Conference on Emerging Applications in Material Science and Technology: Iceamst 2020, Sozopol, Bulgaria, 30–31 January 2020; p. 030002. [Google Scholar] [CrossRef]
- Jafary, T.; Rahimnejad, M.; Ghoreyshi, A.A.; Najafpour, G.; Hghparast, F.; Daud, W.R.W. Assessment of bioelectricity production in microbial fuel cells through series and parallel connections. Energy Convers. Manag. 2013, 75, 256–262. [Google Scholar] [CrossRef]
- Zhao, N.; Angelidaki, I.; Zhang, Y. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol. Water Res. 2017, 109, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Ieropoulos, I.; Greenman, J.; Melhuish, C. Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. Int. J. Energy Res. 2008, 32, 1228–1240. [Google Scholar] [CrossRef]
- Vilajeliu-Pons, A.; Puig, S.; Salcedo-Dávila, I.; Balaguer, M.D.; Colprim, J. Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials. Environ. Sci. Water Res. Technol. 2017, 3, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Yuvraj, C.; Aranganathan, V. Configuration analysis of stacked microbial fuel cell in power enhancement and its application in wastewater treatment. Arab. J. Sci. Eng. 2017, 43, 101–108. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Wang, L.; Zhao, F. Polarization behavior of microbial fuel cells under stack operation. Chin. Sci. Bull. 2014, 59, 2214–2220. [Google Scholar] [CrossRef]
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Minutillo, M.; Nastro, R.A.; Di Micco, S.; Jannelli, E.; Cioffi, R.; Di Giuseppe, M. Performance assessment of multi-electrodes reactors for scaling-up microbial fuel cells. E3S Web Conf. 2020, 197, 08020. [Google Scholar] [CrossRef]
- Logan, B.; Cheng, S.; Watson, V.; Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 2007, 41, 3341–3346. [Google Scholar] [CrossRef]
- Liu, H.; Ramnarayanan, R.; Logan, B.E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 2004, 38, 2281–2285. [Google Scholar] [CrossRef]
- Flagiello, F.; Gambino, E.; Nastro, R.A.; Kuppam, C. Harvesting energy using compost as a source of carbon and electrogenic bacteria. In Bioelectrochemical Systems: Vol. 2 Current and Emerging Applications; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, p. 217. [Google Scholar]
- Cercado, B.; Byrne, N.; Bertrand, M.; Pocaznoi, D.; Rimboud, M.; Achouak, W.; Bergel, A. Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics. Bioresour. Technol. 2013, 134, 276–284. [Google Scholar] [CrossRef]
- Cercado-Quezada, B.; Delia, M.-L.; Bergel, A. Treatment of dairy wastes with a microbial anode formed from garden compost. J. Appl. Electrochem. 2010, 40, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Watson, V.J.; Logan, B.E. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochem. Commun. 2011, 13, 54–56. [Google Scholar] [CrossRef]
- Khaled, F.; Ondel, O.; Allard, B. Microbial fuel cells as power supply of a low-power temperature sensor. J. Power Sources 2016, 306, 354–360. [Google Scholar] [CrossRef]
- Chen, X.; Cui, D.; Wang, X.; Wang, X.; Li, W. Porous carbon with defined pore size as anode of microbial fuel cell. Biosens. Bioelectron. 2015, 69, 135–141. [Google Scholar] [CrossRef]
- Kim, B.; An, J.; Chang, I.S. Elimination of power overshoot at bioanode through assistance current in microbial fuel cells. ChemSusChem 2017, 10, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Hamelers, H.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
Geometric Details | Units | Values |
---|---|---|
External Dimensions | mm | 50 × 50 × 46.5 |
Internal Dimensions | mm | 30 × 40 |
Internal Dimensions (diameter) | mm | 30 |
Total internal volume | mL | 28 |
Cathode surface | cm2 | 7 |
Geometric Details | Units | Values |
---|---|---|
External Dimensions | mm | 200 × 60 × 40 |
Internal Dimensions | mm | 179 × 49 × 29 |
Total internal volume | mL | 253 |
Cathode surface | cm2 | 28 |
Resistance (Ω) | 33,000 | 10,000 | 5600 | 2200 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Average voltage (mV) | 163 | 236 | 245 | 314 | 238 | 196 | 250 | 266 | 276 | 326 | 210 | 215 |
OCV (mV) | 231 | - | - | 390 | - | - | - | 428 | 507 | 564 |
Configuration | External Resistance (Ω) | Current (mA) | Internal Resistance (Ω) |
---|---|---|---|
Series | 4700 | 0.129 | 19,400 |
Parallel | 470 | 0.452 | 1200 |
Parallel-Series | 820 | 0.366 | 3000 |
Series-Parallel | 820 | 0.213 | 4600 |
Multi-electrode | 820 | 0.252 | 2100 |
Configuration | External Resistance (Ω) | Current (mA) | Internal Resistance (Ω) |
---|---|---|---|
Series | 2200 | 0.159 | 14,900 |
Parallel | 470 | 0.540 | 992 |
Parallel-Series | 820 | 0.488 | 2800 |
Series-Parallel | 820 | 0.305 | 3700 |
Multi-electrode | 680 | 0.324 | 1200 |
Configuration | Resistance (kΩ) | Operation Time (h) | Standard Deviation (mW) | Electric Energy (mWh) | Volumetric Energy Density (Wh/m3) |
---|---|---|---|---|---|
Series | 12.0 | 144 | 0.71 | 206.7 | 1845.2 |
Parallel | 0.68 | 72 | 0.09 | 77.8 | 694.8 |
Parallel-Series | 1.0 | 120 | 0.39 | 307.1 | 2742.0 |
Series-Parallel | 3.3 | 72 | 0.53 | 104.7 | 934.9 |
Multi-electrode | 1.0 | 120 | 0.10 | 157.9 | 624.2 |
Configurations | Multi-Electrode | Series | Parallel | Series/Parallel | Parallel/Series | |||||
---|---|---|---|---|---|---|---|---|---|---|
Units | W/m3 | W/m2 | W/m3 | W/m2 | W/m3 | W/m2 | W/m3 | W/m2 | W/m3 | W/m2 |
This work | 0.471 | 0.043 | 1.799 | 0.072 | 2.201 | 0.088 | 1.379 | 0.055 | 2.451 | 0.098 |
[7] | - | 0.975 | - | - | - | - | - | - | - | - |
[6] | 14 | - | - | - | - | - | - | - | - | - |
[10] | - | - | - | 0.079 | - | - | - | - | - | - |
[11] | - | - | - | 0.040 | - | 0.08 | - | - | - | - |
[12] | - | - | - | 0.109 | - | 0.128 | - | - | - | - |
[13] | - | - | - | 0.488 | - | 0.450 | - | - | - | - |
[14] | - | - | 0.450 | 0.810 | 0.560 | - | - | . | ||
[16] | - | - | - | 0.813 | - | 1.546 | - | 2.418 | - | - |
[15] | - | - | 0.03 | - | 0.27 | - | 0.33 | - | - | - |
[17] | - | - | 16 | - | 27.3 | - | 18.3 | - | 22.5 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minutillo, M.; Di Micco, S.; Di Giorgio, P.; Erme, G.; Jannelli, E. Investigating Air-Cathode Microbial Fuel Cells Performance under Different Serially and Parallelly Connected Configurations. Energies 2021, 14, 5116. https://doi.org/10.3390/en14165116
Minutillo M, Di Micco S, Di Giorgio P, Erme G, Jannelli E. Investigating Air-Cathode Microbial Fuel Cells Performance under Different Serially and Parallelly Connected Configurations. Energies. 2021; 14(16):5116. https://doi.org/10.3390/en14165116
Chicago/Turabian StyleMinutillo, Mariagiovanna, Simona Di Micco, Paolo Di Giorgio, Giovanni Erme, and Elio Jannelli. 2021. "Investigating Air-Cathode Microbial Fuel Cells Performance under Different Serially and Parallelly Connected Configurations" Energies 14, no. 16: 5116. https://doi.org/10.3390/en14165116
APA StyleMinutillo, M., Di Micco, S., Di Giorgio, P., Erme, G., & Jannelli, E. (2021). Investigating Air-Cathode Microbial Fuel Cells Performance under Different Serially and Parallelly Connected Configurations. Energies, 14(16), 5116. https://doi.org/10.3390/en14165116