Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characteristics of the Ni-M/Ce0.8La0.2O1.9
3.2. Activity of Ni-M/Ce0.8La0.2O1.9 Catalysts in ATR of C2H5OH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lupi, V.; Marsiglio, S. Population growth and climate change: A dynamic integrated climate-economy-demography model. Ecol. Econ. 2021, 184, 107011. [Google Scholar] [CrossRef]
- Klein, T.; Anderegg, W.R.L. Global warming and urban population growth in already warm regions drive a vast increase in heat exposure in the 21st century. Sustain. Cities Soc. 2021, 73, 103098. [Google Scholar] [CrossRef]
- Goeppert, A.; Czaun, M.; Jones, J.P.; Surya Prakash, G.K.; Olah, G.A. Recycling of carbon dioxide to methanol and derived products-closing the loop. Chem. Soc. Rev. 2014, 43, 7995–8048. [Google Scholar] [CrossRef] [PubMed]
- Ismagilov, Z.R.; Parmon, V.N. Catalytic methods of processing carbon dioxide from coal generation into useful products. In 10 Breakthrough Ideas in the Field of Energy for the Next 10 Years; Global Energy: Moscow, Russia, 2021; pp. 54–74. Available online: https://globalenergyprize.org/ru/10ideas/ (accessed on 25 June 2021).
- Akaev, A.A.; Davydova, O.I. A mathematical description of selected energy transition scenarios in the 21st century, intended to realize the main goals of the paris climate agreement. Energies 2021, 14, 2558. [Google Scholar] [CrossRef]
- Bulushev, D.A. Progress in catalytic hydrogen production from formic acid over supported metal complexes. Energies 2021, 14, 1334. [Google Scholar] [CrossRef]
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025. [Google Scholar] [CrossRef]
- Bloomberg New Energy Finance. Hydrogen Economy Outlook; Bloomberg Finance L.P.: New York, NY, USA, 2020. [Google Scholar]
- Cader, J.; Koneczna, R.; Olczak, P. The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy. Energies 2021, 14, 4811. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Innovation in hydrogen production. Int. J. Hydrogen Energy 2017, 42, 14843–14864. [Google Scholar] [CrossRef]
- Mosińska, M.; Szynkowska-Jóźwik, M.I.; Mierczyński, P. Catalysts for hydrogen generation via oxy–steam reforming of methanol process. Materials 2020, 13, 5601. [Google Scholar] [CrossRef]
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G.A. Catalytic hydrogen production from methane: A review on recent progress and prospect. Catalysts 2020, 10, 858. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2019, 45, 3847–3869. [Google Scholar] [CrossRef]
- Le, V.T.; Dragoi, E.N.; Almomani, F.; Vasseghian, Y. Artificial neural networks for predicting hydrogen production in catalytic dry reforming: A systematic review. Energies 2021, 14, 2894. [Google Scholar] [CrossRef]
- Mazhar, A.; Khoja, A.H.; Azad, A.K.; Mushtaq, F.; Naqvi, S.R.; Shakir, S.; Hassan, M.; Liaquat, R.; Anwar, M. Performance Analysis of TiO2-Modified Co/MgAl2O4 Catalyst for Dry Reforming of Methane in a Fixed Bed Reactor for Syngas (H2, CO) Production. Energies 2021, 14, 3347. [Google Scholar] [CrossRef]
- Quarton, C.J.; Samsatli, S. The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation. Appl. Energy 2020, 257, 113936. [Google Scholar] [CrossRef]
- Yu, M.; Wang, K.; Vredenburg, H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. Int. J. Hydrogen Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
- Minutillo, M.; Perna, A.; Sorce, A. Green hydrogen production plants via biogas steam and autothermal reforming processes: Energy and exergy analyses. Appl. Energy 2020, 277, 115452. [Google Scholar] [CrossRef]
- Worawimut, C.; Vivanpatarakij, S.; Watanapa, A.; Wiyaratn, W.; Assabumrungrat, S. Performance evaluation of biogas upgrading systems from swine farm to biomethane production for renewable hydrogen source. Int. J. Hydrogen Energy 2019, 44, 23135–23148. [Google Scholar] [CrossRef]
- Chouhan, K.; Sinha, S.; Kumar, S. Simulation of steam reforming of biogas in an industrial reformer for hydrogen production. Int. J. Hydrogen Energy 2021, 46, 26809–26824. [Google Scholar] [CrossRef]
- Khila, Z.; Hajjaji, N.; Pons, M.N.; Renaudin, V.; Houas, A. A comparative study on energetic and exergetic assessment of hydrogen production from bioethanol via steam reforming, partial oxidation and auto-thermal reforming processes. Fuel Process. Technol. 2013, 112, 19–27. [Google Scholar] [CrossRef]
- Iulianelli, A.; Palma, V.; Bagnato, G.; Ruocco, C.; Huang, Y.; Veziroğlu, N.T.; Basile, A. From bioethanol exploitation to high grade hydrogen generation: Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor. Renew. Energy 2018, 119, 834–843. [Google Scholar] [CrossRef]
- Angili, T.S.; Grzesik, K.; Rödl, A.; Kaltschmitt, M. Life cycle assessment of bioethanol production: A review of feedstock, technology and methodology. Energies 2021, 14, 2939. [Google Scholar] [CrossRef]
- Fu, J.; Du, J.; Lin, G.; Jiang, D. Analysis of Yield Potential and Regional Distribution for Bioethanol in China. Energies 2021, 14, 4554. [Google Scholar] [CrossRef]
- Annual World Fuel Ethanol Production. Available online: https://ethanolrfa.org/statistics/annual-ethanol-production/ (accessed on 25 June 2021).
- Nahar, G.; Dupont, V. Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria-zirconia supported catalysts: Review. Renew. Sustain. Energy Rev. 2014, 32, 777–796. [Google Scholar] [CrossRef]
- Nahar, G.; Dupont, V. Recent Advances in Hydrogen Production Via Autothermal Reforming Process (ATR): A Review of Patents and Research Articles. Recent Pat. Chem. Eng. 2013, 6, 8–42. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Kumar, A.; Prasad, R.; Upadhyay, S.N. Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation. Renew. Sustain. Energy Rev. 2017, 74, 89–103. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y. Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catal. 2014, 4, 1078–1090. [Google Scholar] [CrossRef]
- Hou, T.; Zhang, S.; Chen, Y.; Wang, D.; Cai, W. Hydrogen production from ethanol reforming: Catalysts and reaction mechanism. Renew. Sustain. Energy Rev. 2015, 44, 132–148. [Google Scholar] [CrossRef]
- Chagas, C.A.; Manfro, R.L.; Toniolo, F.S. Production of Hydrogen by Steam Reforming of Ethanol over Pd-Promoted Ni/SiO2 Catalyst. Catal. Lett. 2020, 150, 3424–3436. [Google Scholar] [CrossRef]
- Greluk, M.; Rotko, M.; Turczyniak-Surdacka, S. Enhanced catalytic performance of La2O3 promoted Co/CeO2 and Ni/CeO2 catalysts for effective hydrogen production by ethanol steam reforming. Renew. Energy 2020, 155, 378–395. [Google Scholar] [CrossRef]
- Olivares, A.C.V.; Gomez, M.F.; Barroso, M.N.; Abello, M.C. Ni-supported catalysts for ethanol steam reforming: Effect of the solvent and metallic precursor in catalyst preparation. Int. J. Ind. Chem. 2018, 9, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Vacharapong, P.; Arayawate, S.; Katanyutanon, S.; Toochinda, P.; Lawtrakul, L.; Charojrochkul, S. Enhancement of ni catalyst using CeO2–Al2O3 support prepared with magnetic inducement for ESR. Catalysts 2020, 10, 1357. [Google Scholar] [CrossRef]
- Sohrabi, S.; Irankhah, A. Synthesis, characterization, and catalytic activity of Ni/CeMnO2 catalysts promoted by copper, cobalt, potassium and iron for ethanol steam reforming. Int. J. Hydrogen Energy 2021, 46, 12846–12856. [Google Scholar] [CrossRef]
- Han, X.; Yu, Y.; He, H.; Shan, W. Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce-La solid solution. Int. J. Hydrogen Energy 2013, 38, 10293–10304. [Google Scholar] [CrossRef]
- Moraes, T.S.; Neto, R.C.R.; Ribeiro, M.C.; Mattos, L.V.; Kourtelesis, M.; Ladas, S.; Verykios, X.; Noronha, F.B. The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol. Catal. Today 2015, 242, 35–49. [Google Scholar] [CrossRef]
- Liu, Z.; Duchoň, T.; Wang, H.; Peterson, E.W.; Zhou, Y.; Luo, S.; Zhou, J.; Matolín, V.; Stacchiola, D.J.; Rodriguez, J.A.; et al. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeOx (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation. J. Phys. Chem. C 2015, 119, 18248–18256. [Google Scholar] [CrossRef]
- Han, X.; Yu, Y.; He, H.; Zhao, J.; Wang, Y. Oxidative steam reforming of ethanol over Rh catalyst supported on Ce1-xLaxOy (x = 0.3) solid solution prepared by urea co-precipitation method. J. Power Sources 2013, 238, 57–64. [Google Scholar] [CrossRef]
- Cai, W.; Wang, F.; Zhan, E.; Van Veen, A.C.; Mirodatos, C.; Shen, W. Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming. J. Catal. 2008, 257, 96–107. [Google Scholar] [CrossRef]
- Matus, E.V.; Okhlopkova, L.B.; Sukhova, O.B.; Ismagilov, I.Z.; Kerzhentsev, M.A.; Ismagilov, Z.R. Effects of preparation mode and doping on the genesis and properties of Ni/Ce1-xMxOy nanocrystallites (M = Gd, La, Mg) for catalytic applications. J. Nanopart. Res. 2019, 21, 11. [Google Scholar] [CrossRef]
- Ismagilov, Z.R.; Matus, E.V.; Ismagilov, I.Z.; Sukhova, O.B.; Yashnik, S.A.; Ushakov, V.A.; Kerzhentsev, M.A. Hydrogen production through hydrocarbon fuel reforming processes over Ni based catalysts. Catal. Today 2019, 323, 166–182. [Google Scholar] [CrossRef]
- Kerzhentsev, M.A.; Matus, E.V.; Ismagilov, I.Z.; Sukhova, O.B.; Bharali, P.; Ismagilov, Z.R. Control of Ni/Ce1-xMxOy catalyst properties via the selection of dopant M = Gd, La, Mg. Part 1. Physicochemical characteristics. Eurasian Chem. J. 2018, 20, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Matus, E.V.; Ismagilov, I.Z.; Ushakov, V.A.; Nikitin, A.P.; Stonkus, O.A.; Gerasimov, E.Y.; Kerzhentsev, M.A.; Bharali, P.; Ismagilov, Z.R. Genesis and structural properties of (Ce1–xMx)0.8Ni0.2Oy (M = La, Mg) oxides. J. Struct. Chem. 2020, 61, 1080–1089. [Google Scholar] [CrossRef]
- De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347. [Google Scholar] [CrossRef] [Green Version]
- Dal Santo, V.; Gallo, A.; Naldoni, A.; Guidotti, M.; Psaro, R. Bimetallic heterogeneous catalysts for hydrogen production. Catal. Today 2012, 197, 190–205. [Google Scholar] [CrossRef]
- Matus, E.V.; Ismagilov, I.Z.; Yashnik, S.A.; Ushakov, V.A.; Prosvirin, I.P.; Kerzhentsev, M.A.; Ismagilov, Z.R. Hydrogen production through autothermal reforming of CH4: Efficiency and action mode of noble (M = Pt, Pd) and non-noble (M = Re, Mo, Sn) metal additives in the composition of Ni-M/Ce0.5Zr0.5O2/Al2O3 catalysts. Int. J. Hydrogen Energy 2020, 45, 33352–33369. [Google Scholar] [CrossRef]
- Kerzhentsev, M.A.; Matus, E.V.; Rundau, I.A.; Kuznetsov, V.V.; Ismagilov, I.Z.; Ushakov, V.A.; Ismagilov, Z.R. Development of a Ni–Pd/CeZrO2/Al2O3 catalyst for the effective conversion of methane into hydrogen-containing gas. Kinet. Catal. 2017, 58, 601–622. [Google Scholar] [CrossRef]
- Ismagilov, I.Z.; Matus, E.V.; Kuznetsov, V.V.; Mota, N.; Navarro, R.M.; Yashnik, S.A.; Prosvirin, I.P.; Kerzhentsev, M.A.; Ismagilov, Z.R.; Fierro, J.L.G. Hydrogen production by autothermal reforming of methane: Effect of promoters (Pt, Pd, Re, Mo, Sn) on the performance of Ni/La2O3 catalysts. Appl. Catal. A Gen. 2014, 481, 104–115. [Google Scholar] [CrossRef]
- Moretti, E.; Storaro, L.; Talon, A.; Chitsazan, S.; Garbarino, G.; Busca, G.; Finocchio, E. Ceria-zirconia based catalysts for ethanol steam reforming. Fuel 2015, 153, 166–175. [Google Scholar] [CrossRef]
- Trane-Restrup, R.; Dahl, S.; Jensen, A.D. Steam reforming of ethanol: Effects of support and additives on Ni-based catalysts. Int. J. Hydrogen Energy 2013, 38, 15105–15118. [Google Scholar] [CrossRef]
- Akdim, O.; Cai, W.; Fierro, V.; Provendier, H.; Veen, A.; Shen, W.; Mirodatos, C. Oxidative Steam Reforming of Ethanol over Ni–Cu/SiO2, Rh/Al2O3 and Ir/CeO2: Effect of Metal and Support on Reaction Mechanism. Top. Catal. 2008, 51, 22–38. [Google Scholar] [CrossRef]
- Moraes, T.S.; Rabelo Neto, R.C.; Ribeiro, M.C.; Mattos, L.V.; Kourtelesis, M.; Ladas, S.; Verykios, X.; Noronha, F.B. Ethanol conversion at low temperature over CeO2-Supported Ni-based catalysts. Effect of Pt addition to Ni catalyst. Appl. Catal. B Environ. 2016, 181, 754–768. [Google Scholar] [CrossRef]
- Pereira, E.B.; Homs, N.; Martí, S.; Fierro, J.L.G.; Ramírez de la Piscina, P. Oxidative steam-reforming of ethanol over Co/SiO2, Co-Rh/SiO2 and Co-Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes. J. Catal. 2008, 257, 206–214. [Google Scholar] [CrossRef]
- Chen, L.C.; Lin, S.D. The ethanol steam reforming over Cu-Ni/SiO2 catalysts: Effect of Cu/Ni ratio. Appl. Catal. B Environ. 2011, 106, 639–649. [Google Scholar] [CrossRef]
- Kerzhentsev, M.A.; Matus, E.V.; Ismagilov, I.Z.; Ushakov, V.A.; Stonkus, O.A.; Larina, T.V.; Kozlova, G.S.; Bharali, P.; Ismagilov, Z.R. Structural and morphological properties of Ce1–xMxOy (M = Gd, La, Mg) supports for the catalysts of autothermal ethanol conversion. J. Struct. Chem. 2017, 58, 133–141. [Google Scholar] [CrossRef]
- Kerzhentsev, M.A.; Matus, E.V.; Ismagilov, I.Z.; Sukhova, O.B.; Bharali, P.; Ismagilov, Z.R. Control of Ni/Ce1-xMxOy Catalyst Properties Via the Selection of Dopant M = Gd, La, Mg. Part 2. Catalytic Activity. Eurasian Chem. J. 2018, 20, 293–300. [Google Scholar] [CrossRef]
- Li, D.; Nakagawa, Y.; Tomishige, K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl. Catal. A Gen. 2011, 408, 1–24. [Google Scholar] [CrossRef]
- Ji, H.; Cho, S. Steam-to-carbon ratio control strategy for start-up and operation of a fuel processor. Int. J. Hydrogen Energy 2017, 42, 9696–9706. [Google Scholar] [CrossRef]
- Lee, S.H.D.; Applegate, D.V.; Ahmed, S.; Calderone, S.G.; Harvey, T.L. Hydrogen from natural gas: Part I—Autothermal reforming in an integrated fuel processor. Int. J. Hydrogen Energy 2005, 30, 829–842. [Google Scholar] [CrossRef]
- Mikuli, E.; Migdal-Mikuli, A.; Chyzy, R.; Grad, B.; Dziembaj, R. Melting and thermal decomposition of [Ni(H2O)6](NO3)2. Thermochim. Acta 2001, 370, 65–71. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, T.; Chen, X.; He, Y.; Lang, X. Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China. Pet. Explor. Dev. 2018, 45, 412–421. [Google Scholar] [CrossRef]
- Zhao, P.; Qin, F.; Huang, Z.; Sun, C.; Shen, W.; Xu, H. Morphology-dependent oxygen vacancies and synergistic effects of Ni/CeO2 catalysts for N2O decomposition. Catal. Sci. Technol. 2018, 8, 276–288. [Google Scholar] [CrossRef]
- Montoya, J.A.; Romero-Pascual, E.; Gimon, C.; Del Angel, P.; Monzon, A. Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol–gel. Catal. Today 2000, 63, 71–85. [Google Scholar] [CrossRef]
- Pan, Z.; Ding, Y.; Jiang, D.; Li, X.; Jiao, G.; Luo, H. Study on Ni-Re-K/Al2O3 catalysts for synthesis of N,N′-di-sec-butyl p-phenylene diamine from p-nitroaniline and 2-butanone. Appl. Catal. A Gen. 2007, 330, 43–48. [Google Scholar] [CrossRef]
- Bobadilla, L.F.; Romero-Sarria, F.; Centeno, M.A.; Odriozola, J.A. Promoting effect of Sn on supported Ni catalyst during steam reforming of glycerol. Int. J. Hydrogen Energy 2016, 41, 9234–9244. [Google Scholar] [CrossRef]
- Sharifi, M.; Haghighi, M.; Rahmani, F.; Karimipour, S. Syngas production via dry reforming of CH4 over Co- and Cu-promoted Ni/Al2O3-ZrO2 nanocatalysts synthesized via sequential impregnation and sol-gel methods. J. Nat. Gas. Sci. Eng. 2014, 21, 993–1004. [Google Scholar] [CrossRef]
- Mondal, T.; Pant, K.K.; Dalai, A.K. Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int. J. Hydrogen Energy 2015, 40, 2529–2544. [Google Scholar] [CrossRef]
- Han, S.J.; Bang, Y.; Seo, J.G.; Yoo, J.; Song, I.K. Hydrogen production by steam reforming of ethanol over mesoporous Ni-Al2O3-ZrO2 xerogel catalysts: Effect of Zr/Al molar ratio. Int. J. Hydrogen Energy 2013, 38, 1376–1383. [Google Scholar] [CrossRef]
- Espitia-Sibaja, M.; Muñoz, M.; Moreno, S.; Molina, R. Effects of the cobalt content of catalysts prepared from hydrotalcites synthesized by ultrasound-assisted coprecipitation on hydrogen production by oxidative steam reforming of ethanol (OSRE). Fuel 2017, 194, 7–16. [Google Scholar] [CrossRef]
- Muñoz, M.; Moreno, S.; Molina, R. Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method. Int. J. Hydrogen Energy 2012, 37, 18827–18842. [Google Scholar] [CrossRef]
- Profeti, L.P.R.; Ticianelli, E.A.; Assaf, E.M. Production of hydrogen via steam reforming of biofuels on Ni/CeO2–Al2O3 catalysts promoted by noble metals. Int. J. Hydrogen Energy 2009, 34, 5049–5060. [Google Scholar] [CrossRef]
- Gutierrez, A.; Karinen, R.; Airaksinen, S.; Kaila, R.; Krause, A.O.I. Autothermal reforming of ethanol on noble metal catalysts. Int. J. Hydrogen Energy 2011, 36, 8967–8977. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, F.; Wang, N.; Chen, R.; Hsu, A.T. Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen production in auto-thermal reforming of Ethanol. Int. J. Hydrogen Energy 2012, 37, 1272–1279. [Google Scholar] [CrossRef]
- Palma, V.; Ruocco, C.; Meloni, E.; Ricca, A. Oxidative steam reforming of ethanol on mesoporous silica supported Pt–Ni/CeO2 catalysts. Int. J. Hydrogen Energy 2017, 42, 1598–1608. [Google Scholar] [CrossRef]
- Cai, W.; Wang, F.; Daniel, C.; Van Veen, A.C.; Schuurman, Y.; Descorme, C.; Provendier, H.; Shen, W.; Mirodatos, C. Oxidative steam reforming of ethanol over Ir/CeO2 catalysts: A structure sensitivity analysis. J. Catal. 2012, 286, 137–152. [Google Scholar] [CrossRef]
Sample 1 | Textural Characteristics | Structural Characteristics | |||||
---|---|---|---|---|---|---|---|
SBET, m2/g | Vpore, cm3/g | Dpore, nm | Phase Composition | CSR (nm)/Parameter of the Unit Cell (Å) for | |||
CeO2-Based Phase | Ni-Containing Phase | ||||||
Ce0.8La0.2O1.9 | 94 | 0.19 | 7.9 | CeO2 | 8.0/5.478 | - | |
Ni | F | 69 | 0.19 | 10.8 | CeO2, NiO | 8.0/5.478 | 16.5 |
S | 24 | 0.15 | 25.7 | CeO2, Ni° | 18.0/5.479 | 20.0/3.525 | |
Ni-Pt-0.012 (C) | F | 70 | 0.19 | 10.7 | CeO2, NiO | 8.0/5.480 | 16.5 |
S | 26 | 0.14 | 21.0 | CeO2, Ni° | 14.0/5.481 | 20.0/3.526 | |
Ni-Pd-0.012 (C) | F | 69 | 0.21 | 12.3 | CeO2, NiO | 8.0/5.480 | 17.0 |
S | 41 | 0.15 | 14.5 | CeO2, NiPd | 14.0/5.483 | 20.0/3.532 | |
Ni-Rh-0.012 (C) | F | 64 | 0.20 | 12.4 | CeO2, NiO | 8.0/5.480 | 19.0 |
S | 34 | 0.15 | 18.0 | CeO2, NiRh | 14.0/5.483 | 20.0/3.528 | |
Ni-Re-0.012 (C) | F | 75 | 0.22 | 11.9 | CeO2, NiO | 8.0/5.480 | 19.0 |
S | 38 | 0.17 | 17.3 | CeO2, NiRe | 13.0/5.488 | 16.0/3.538 | |
Ni-Pd-0.003 (S) | F | 62 | 0.19 | 12.0 | CeO2, NiO | 8.0 /5.480 | 16.5 |
S | 43 | 0.18 | 16.6 | CeO2, NiPd | 15.0/5.482 | 20.0/3.529 | |
Ni-Pd-0.012 (S) | F | 56 | 0.17 | 12.3 | CeO2, NiO | 8.0/5.480 | 16.5 |
S | 60 | 0.16 | 11.1 | CeO2, NiPd | 15.0/5.482 | 20.0/3.532 |
Catalyst | H2 Yield, % | Selectivity, % | ||
---|---|---|---|---|
CO | CO2 | CH4 | ||
Ni | 46 | 30 | 65 | 5 |
Ni-Pt-0.012 (C) | 51 | 27 | 66 | 7 |
Ni-Pd-0.012 (C) | 59 | 31 | 62 | 7 |
Ni-Rh-0.012 (C) | 54 | 30 | 64 | 6 |
Ni-Re-0.012 (C) | 65 | 24 | 65 | 11 |
Ni-Pd-0.003 (S) | 50 | 22 | 66 | 12 |
Ni-Pd-0.012 (S) | 58 | 22 | 67 | 11 |
Catalyst | Process Conditions | H2 Yield, mol H2/mol C2H5OH | Reference |
---|---|---|---|
30Ni-1Rh/Ce0.5Zr0.5O2 | C2H5OH:H2O:O2:He = 1:9:0.35:0 T = 600 °C. | 4.6 | [68] |
10Ni/ZrO2/Al2O3 | C2H5OH:H2O:O2:N2 = 1:6:0:24.5 T = 500 °C. | 4.1 | [69] |
10Ni-0.4Re/Ce0.8La0.2O1.9 | C2H5OH:H2O:O2:He = 1:3:0.5:1 T = 600 °C. | 4.0 | This work |
10Co/MgO-Al2O3 | C2H5OH:H2O:O2:He = 1:3:0.4:0 T = 600 °C. | 3.8 | [70] |
Co/Pr/MgO-Al2O3 | C2H5OH:H2O:O2:He = 1:3:0.4:0 T = 550 °C. | 3.4 | [71] |
5Ni0.3Pt/10CeO2/Al2O3 | C2H5OH:H2O:O2:He = 1:8:0.5:0 T = 650 °C. | 3.2 | [72] |
0.25Rh0.25Pt/ZrO2 | C2H5OH:H2O:O2:He = 1:2:0.2:0 T = 700 °C. | 3.1 | [73] |
LaNiFeO3 | C2H5OH:H2O:O2:He = 1:3:0.5:0 T = 650 °C. | 3.0 | [74] |
10Ni-3Pt/30CeO2/SiO2 | C2H5OH:H2O:O2:He = 1:3:0:0 T= 750 °C. | 2.4 | [75] |
2Ir/CeO2 | C2H5OH:H2O:O2:He = 1:1.8:0.6:0 T = 700 °C. | 2.2 | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matus, E.; Sukhova, O.; Ismagilov, I.; Kerzhentsev, M.; Stonkus, O.; Ismagilov, Z. Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion. Energies 2021, 14, 5176. https://doi.org/10.3390/en14165176
Matus E, Sukhova O, Ismagilov I, Kerzhentsev M, Stonkus O, Ismagilov Z. Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion. Energies. 2021; 14(16):5176. https://doi.org/10.3390/en14165176
Chicago/Turabian StyleMatus, Ekaterina, Olga Sukhova, Ilyas Ismagilov, Mikhail Kerzhentsev, Olga Stonkus, and Zinfer Ismagilov. 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion" Energies 14, no. 16: 5176. https://doi.org/10.3390/en14165176
APA StyleMatus, E., Sukhova, O., Ismagilov, I., Kerzhentsev, M., Stonkus, O., & Ismagilov, Z. (2021). Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion. Energies, 14(16), 5176. https://doi.org/10.3390/en14165176