The Analysis of Power Transformer Population Working in Different Operating Conditions with the Use of Health Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject of the Research
- Generator step-up (GSU)—transformers working in power generation plants as the step-up units or the devices supplying the auxiliary power directly from the generator;
- Electric arc furnace (EAF)—transformers working in the steel or ferroalloy plants as the power supply for industrial furnaces;
- Distribution—widely used in the power transmission grids;
- Industrial—transformers used to supply power to factories and process lines.
2.2. The Health Index Model
2.3. Assessment Criteria
- Level “0”—GSU in power plants and autotransformers interconnecting the high voltage grids;
- Level “1”—auxiliary transformers in power plants, large distribution devices, and units supplying complex and costly process lines;
- Level “2”—typical high voltage network distribution equipment and smaller transformers of significant importance;
- Level “3”—medium voltage pole-mounted transformers and small units supplying non-complex technological processes.
- Customer type (the importance, cost of downtime);
- The average load factor;
- The redundancy and power backup possibilities;
- The possibility of transformer renovation or replacement;
- Potential increase in the load in the future.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tenbohlen, S.; Jagers, J.; Vahidi, F.; Müller, P.; Lapworth, J.; Yukiyasu, S.; Desai, B.; McIntosh, A.; Bastos, G.; Bo, L. Transformer Realiability Survey; Technical Brochure 642; CIGRE: Paris, France, 2015. [Google Scholar]
- Tenbohlen, S.; Jagers, J.; Vahidi, F. Standarized Survey of Transformer Reliability. In Proceedings of the 2017 International Symposium on Electrical Insulating Materials (ISEIM 2017), Toyohashi, Japan, 11–15 September 2017. [Google Scholar] [CrossRef]
- IEEE. IEEE C57.152-2013—Guide for the Diagnostic Field Testing of Fluid-Filled Power Transformers, Regulators, and Reactors; Institute of Electrical and Electronic Engineers: Piscataway, NJ, USA, 2013. [Google Scholar]
- CIGRE. Guide for Transformer Maintenance; WG A2.34, Technical Brochure no. 445; CIGRE: Paris, France, 2011. [Google Scholar]
- United States Bureau of Reclamation. Facilities Instructions, Standards and Techniques. In Transformer Maintenance; United States Bureau of Reclamation: Denver, CO, USA, 2000; Volume 3–30. [Google Scholar]
- Framework Instructions for Transformer Operation (In Polish—Ramowa Instrukcja Eksploatacji Transformatorów); Joint Publication; ZPBE Energopomiar-Elektryka: Gliwice, Poland, 2012; ISBN 978-83-916040-4-5.
- Abu-Elanien, A.E.B.; Salama, M.M.A. Asset management techniques for transformers. Electr. Power Syst. Res. 2010, 80, 456–464. [Google Scholar] [CrossRef]
- Szrot, M.; Płowucha, J.; Molenda, P. Transformer management system—TrafoGrade. Transform. Mag. 2021, 8, 106–115. [Google Scholar]
- Jahromi, A.N.; Piercy, R.; Cress, S.; Service, J.R.R.; Fan, W. An Approach to Power Transformer Asset Management Using Health Index. IEEE Electr. Insul. Mag. 2009, 25, 20–34. [Google Scholar] [CrossRef]
- Li, E.; Song, B. Transformer Health Status Evaluation Model Based on Multi-feature Factors. In Proceedings of the 2014 International Conference on Power System Technology (POWERCON 2014), Chengdu, China, 20–22 October 2014. [Google Scholar] [CrossRef]
- Ortiz, F.; Fernandez, I.; Ortiz, A.; Renedo, C.J.; Delgado, F.; Fernandez, C. Health Indexes for power transformers: A case study. IEEE Electr. Insul. Mag. 2016, 32, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Scatiggio, F.; Pompili, M.; Calacara, L. Transformers Fleet Management Through the Use of an Advanced Health Index. In Proceedings of the 2018 Electrical Insulation Conference (EIC), San Antonio, TX, USA, 17–20 June 2018. [Google Scholar] [CrossRef]
- Yahaya, M.S.; Azis, N.; Ab Kadir, M.Z.A.; Jasni, J.; Hairi, M.H.; Talib, M.A. Estimation of Transformers Health Index based on the Markov Chain. Energies 2017, 10, 1824. [Google Scholar] [CrossRef] [Green Version]
- Kadim, E.J.; Azis, N.; Jasni, J.; Ahmad, S.A.; Talib, M.A. Transformers Health Index Assessment Based on Neural-Fuzzy Network. Energies 2018, 11, 710. [Google Scholar] [CrossRef] [Green Version]
- Zeinoddini-Meymand, H.; Vahidi, B. Health index calculation for power transformers using technical and economical parameters. IET Sci. Meas. Technol. 2016, 10, 823–830. [Google Scholar] [CrossRef]
- Bohatyrewicz, P.; Płowucha, J.; Subocz, J. Condition Assessment of Power Transformers Based on Health Index value. Appl. Sci. 2019, 9, 4877. [Google Scholar] [CrossRef] [Green Version]
- IEC. IEC 60296:2020—Fluids for Electrotechnical Applications—Mineral. Insulating Oils for Electrical Equipment; International Electrotechnical Commission: Geneva, Switzerland, 2020. [Google Scholar]
- IEC. IEC 60422:2013—Mineral. Insulating Oils in Electrical Equipment—Supervision and Maintenance Guidance; International Electrotechnical Commission: Geneva, Switzerland, 2013. [Google Scholar]
- IEC. IEC 60599:2015—Mineral. Oil-Filled Electrical Equipment in Service—Guidance on the Interpretation of Dissolved and Free Gases Analysis; International Electrotechnical Commission: Geneva, Switzerland, 2015. [Google Scholar]
- IEEE. IEEE C57.106-2015—Guide for the Acceptance and Maintenance of Insulating Mineral. Oil in Electrical Equipment; Institute of Electrical and Electronic Engineers: Piscataway, NJ, USA, 2015. [Google Scholar]
- IEEE. IEEE C57.104-2019—Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; Institute of Electrical and Electronic Engineers: Piscataway, NJ, USA, 2019. [Google Scholar]
- CIGRE. Furanic Compounds for Diagnosis; WG D1.01 (TF13), Technical Brochure No. 494; CIGRE: Paris, France, 2012. [Google Scholar]
- Lin, Y.; Wei, C.; Tao, F.; Li, J. Aging Assessment of Oil-Paper Insulation of Power Equipment with Furfural Analysis Based on Furfural Generation and Partitioning. IEEE Trans. Power Deliv. 2019, 34, 1626–1633. [Google Scholar] [CrossRef]
- Ghoneim, S.S.M. The Degree of Polymerization in a Prediction Model of Insulating Paper and the Remaining Life of Power Transformers. Energies 2021, 14, 670. [Google Scholar] [CrossRef]
- Transformers Technical Condition Assessment and Population Management (In Polish—Ocena Stanu Technicznego i Zarządzanie Populacją Transformatorów); Joint Publication; OBRE: Piekary Śląskie, Poland, 2013; ISBN 978-83-938292-0-0.
- Prasojo, R.A.; Maulidevi, N.U.; Suwarno; Sodjarno, B.A. A Multiple Expert Consensus Model for Transformer Assessment Index Weighting Factor Determination. In Proceedings of the 8th International Conference on Condition Monitoring and Diagnosis (CMD 2020), Phuket, Thailand, 25–28 October 2020. [Google Scholar] [CrossRef]
- Benhmed, K.; Mooman, A.; Younes, A.; Shaban, K.; El-Hag, A. Feature Selection for Effective Health Index Diagnoses of Power Transformers. IEEE Trans. Power Deliv. 2018, 33, 3223–3226. [Google Scholar] [CrossRef]
- Ghoneim, S.M.; Taha, I.B.M. Comparative Study of Full and Reduced Feature Scenarios for Health Index Computation of Power Transformers. IEEE Access 2020, 8, 181326–181339. [Google Scholar] [CrossRef]
- Cheim, L.; Platts, D.; Prevost, T.; Xu, S. Furan Analysis for Liquid Power Transformers. IEEE Electr. Insul. Mag. 2012, 28, 8–21. [Google Scholar] [CrossRef]
- Piotrowski, T.; Rozga, P.; Kozak, R. Comparative Analysis of the Results of Diagnostic Measurements with an Internal Inspection of Oil-Filled Power Transformers. Energies 2019, 12, 2155. [Google Scholar] [CrossRef] [Green Version]
- Malewski, R.; Subocz, J.; Szrot, M.; Płowucha, J.; Zalewski, R. Condition Assessment of Medium-Power Transformers using Diagnostic Methods: PDC, FDS, FRA to Support Decision to Modernize or Replace Service-Aged Units. In Proceedings of the Session CIGRE 2008, Paris, France, 24–29 August 2008. [Google Scholar]
- Picher, P.; Boudreau, J.F.; Manga, A.; Rajotte, C.; Tardif, C.; Bizier, G.; Di Gaetano, N.; Garon, D.; Girard, B.; Hamel, J.F.; et al. Use of Health Index and Reliability Data for Transformer Condition Assessment and Fleet Ranking. In Proceedings of the Session CIGRE 2014, Paris, France, 24–29 August 2014; pp. 24–29. [Google Scholar]
Physicochemical Properties HIOIL | Dissolved Gas Analysis HIDGA | Solid Insulation Evaluation HIISO |
---|---|---|
Breakdown voltage (BDV) | Hydrogen (H2) | Furfural (2-FAL) |
Water content | Methane (CH4) | Carbon monoxide (CO) |
Acidity | Ethane (C2H6) | Carbon dioxide (CO2) |
Loss factor (Tan δ) | Ethylene (C2H4) | |
Acetylene (C2H2) |
Parameter | Value | FOIL(j) Formula | W(j) Factor |
---|---|---|---|
BDV (kV) | x > 55 | y = 0 | 0.14 |
55 ≥ x ≥ 40 | y = −0.6666667 ∙ (x − 55) | ||
x < 40 | y = 10 | ||
Water content (ppm) | x < 15 | y = 0 | 0.13 |
15 ≤ x ≤ 35 | y = 0.5 ∙ (x − 15) | ||
x > 35 | y = 10 | ||
Acidity (mgKOH/g) | x < 0.02 | y = 0 | 0.42 |
0.02 ≤ x ≤ 0.25 | y = 43.4782609 ∙ (x − 0.02) | ||
x > 0.25 | y = 10 | ||
Tan δ | x < 0.1 | y = 0 | 0.31 |
0.1 ≤ x ≤ 1 | y = 11.11111111 ∙ (x − 0.1) | ||
x > 1 | y = 10 |
Parameter | Value | FOIL(j) Formula | W(j) Factor |
---|---|---|---|
BDV (kV) | x > 60 | y = 0 | 0.14 |
60 ≥ x ≥ 45 | y = −0.6666667 ∙ (x − 60) | ||
x < 45 | y = 10 | ||
Water content (ppm) | x < 10 | y = 0 | 0.13 |
10 ≤ x ≤ 25 | y = 0.6666667 ∙ (x − 10) | ||
x > 25 | y = 10 | ||
Acidity (mgKOH/g) | x < 0.02 | y = 0 | 0.42 |
0.02 ≤ x ≤ 0.20 | y = 55.5555556 ∙ (x − 0.02) | ||
x > 0.20 | y = 10 | ||
Tan δ | x < 0.1 | y = 0 | 0.31 |
0.1 ≤ x ≤ 1 | y = 11.11111111 ∙ (x − 0.1) | ||
x > 1 | y = 10 |
Parameter | Value | FOIL(j) Formula | W(j) Factor |
---|---|---|---|
BDV (kV) | x > 60 | y = 0 | 0.14 |
60 ≥ x ≥ 50 | y = −(x − 60) | ||
x < 50 | y = 10 | ||
Water content (ppm) | x < 8 | y = 0 | 0.13 |
8 ≤ x ≤ 15 | y = 1.428571429 ∙ (x − 8) | ||
x > 15 | y = 10 | ||
Acidity (mgKOH/g) | x < 0.02 | y = 0 | 0.42 |
0.02 ≤ x ≤ 0.15 | y = 76.9230769 ∙ (x − 0.02) | ||
x > 0.15 | y = 10 | ||
Tan δ | x < 0.1 | y = 0 | 0.31 |
0.1 ≤ x ≤ 1 | y = 11.11111111 ∙ (x − 0.1) | ||
x > 1 | y = 10 |
Parameter | Value | FDGA(j) Formula | W(j) Factor |
---|---|---|---|
H2 (ppm) | x < 30 | y = 0 | 0.32 |
30 ≤ x ≤ 350 | y = 0.03125 ∙ (x − 30) | ||
x < 350 | y = 10 | ||
CH4 (ppm) | x < 30 | y = 0 | 0.15 |
30 ≤ x ≤ 150 | y = 0.083333333 ∙ (x − 30) | ||
x > 150 | y = 10 | ||
C2H6 (ppm) | x < 30 | y = 0 | 0.05 |
30 ≤ x ≤ 400 | y = 0.027027027 ∙ (x − 30) | ||
x > 400 | y = 10 | ||
C2H4 (ppm) | x < 25 | y = 0 | 0.15 |
25 ≤ x ≤ 200 | y = 0.057142857 ∙ (x − 25) | ||
x > 200 | y = 10 | ||
C2H2 (ppm) | x < 3 | y = 0 | 0.33 |
3 ≤ x ≤ 70 | y = 0.149253731∙ (x − 3) | ||
x > 70 | y = 10 |
Parameter | Value | FISO(j) Formula | W(j) Factor |
---|---|---|---|
CO (ppm) | x < 250 | y = 0 | 0.15 |
250 ≤ x ≤ 1000 | y = 0.013333 ∙ (x − 250) | ||
x < 1000 | y = 10 | ||
CO2 (ppm) | x < 3000 | y = 0 | 0.15 |
3000 ≤ x ≤ 10,000 | y = 0.001428571 ∙ (x − 3000) | ||
x > 10,000 | y = 10 | ||
2-FAL (ppm) | x < 0.1 | y = 0 | 0.70 |
0.1 ≤ x ≤ 4 | y = 2.564103 ∙ (x − 0.1) | ||
x > 4 | y = 10 |
Subindex | Weighting Factor W(g) |
---|---|
HIOIL | 0.224 |
HIDGA | 0.395 |
HIISO | 0.381 |
Level “0” | Level “1” | Level “2” | Level “3” |
---|---|---|---|
Group I as per [6] | Group I as per [6] | Group II as per [6] | Groups III&IV as per [6] |
Crucial importance | Significant importance | Standard importance | Minor importance |
Condition | Level “0” | Level “1” | Level “2” | Level “3” |
---|---|---|---|---|
Good | 0–5% | 0–10% | 0–15% | 0–15% |
Fair | 5–15% | 10–20% | 15–25% | 15–30% |
Poor | 15–30% | 20–40% | 25–50% | 30–55% |
Risky | 30–100% | 40–100% | 50–100% | 55–100% |
Condition | GSU | EAF | Distribution | Industrial | Overall |
---|---|---|---|---|---|
Good | 160 | 76 | 150 | 63 | 449 |
Fair | 42 | 34 | 5 | 24 | 105 |
Poor | 19 | 15 | 1 | 18 | 53 |
Risky | 11 | 1 | 0 | 1 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohatyrewicz, P.; Mrozik, A. The Analysis of Power Transformer Population Working in Different Operating Conditions with the Use of Health Index. Energies 2021, 14, 5213. https://doi.org/10.3390/en14165213
Bohatyrewicz P, Mrozik A. The Analysis of Power Transformer Population Working in Different Operating Conditions with the Use of Health Index. Energies. 2021; 14(16):5213. https://doi.org/10.3390/en14165213
Chicago/Turabian StyleBohatyrewicz, Patryk, and Andrzej Mrozik. 2021. "The Analysis of Power Transformer Population Working in Different Operating Conditions with the Use of Health Index" Energies 14, no. 16: 5213. https://doi.org/10.3390/en14165213
APA StyleBohatyrewicz, P., & Mrozik, A. (2021). The Analysis of Power Transformer Population Working in Different Operating Conditions with the Use of Health Index. Energies, 14(16), 5213. https://doi.org/10.3390/en14165213