Fabrication of PDMS/GA Composite Materials by Pickering Emulsion Method and Its Application for Oil-Water Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Characterization
2.3. Methods
2.3.1. Preparation of GO
2.3.2. Preparation of GA by the Pickering Emulsion Method
2.3.3. PDMS Modified Graphene Oxide Aerogel
3. Results
3.1. Chemical Composition Analysis of GO, GA, and PDMS/GA
3.2. Oil Absorption Test
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Melin, H. Towards a solution to the energy crisis. Nat. Astron. 2020, 4, 837–838. [Google Scholar] [CrossRef]
- Ouyang, Y.; Shi, L.; Bai, X.; Li, Q.; Wang, J. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 2020, 11, 1807–1813. [Google Scholar] [CrossRef] [Green Version]
- Walker, T.R. Canada right to classify single-use plastics as toxic. Nature 2021, 594, 496. [Google Scholar] [CrossRef] [PubMed]
- Mai, L.; He, H.; Bao, L.J.; Liu, L.Y.; Zeng, E.Y. Plastics Are an Insignificant Carrier of Riverine Organic Pollutants to the Coastal Oceans. Environ. Sci. Technol. 2020, 54, 15852–15860. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wang, F.; Zhang, B.; Zhang, M.; Winter, M. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51. [Google Scholar] [CrossRef]
- Hafiz, H.; Suzuki, K.; Barbiellini, B.; Tsuji, N.; Viswanathan, V. Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials. Nature 2021, 594, 213–216. [Google Scholar] [CrossRef]
- Rogers, C.; Piggott, A.Y.; Thomson, D.J.; Wiser, R.F.; Nicolaescu, R. A universal 3D imaging sensor on a silicon photonics platform. Nature 2020, 590, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Purnell, B.A. Bioenergetic sensor for exercise. Science 2020, 370, 806–807. [Google Scholar]
- Qian, X.; Zhou, J.; Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 20, 1188–1202. [Google Scholar] [CrossRef]
- Almeida, C.; Ghica, M.E.; Ramalho, A.L.; Dures, L. Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in Space environments. J. Mater. Sci. 2021, 56, 13604–13619. [Google Scholar] [CrossRef]
- Lokamani, M.; Kelling, J.; Ohmann, R.; Meyer, J.; Kühne, T.; Cuniberti, G.; Wolf, J.; Huhn, T.; Zahn, P.; Moresco, F. A combined experimental and theoretical study of 1,4-bis(phenylethynyl)-2,5-bis(ethoxy)benzene adsorption on Au(111). Surf. Sci. 2021, 712, 121877. [Google Scholar]
- Ye, R.; Zhao, M.; Mao, X.; Wang, Z.; Chen, P. Nanoscale cooperative adsorption for materials control. Nat. Commun. 2021, 12, 4287. [Google Scholar] [CrossRef]
- Gao, J.; Yan, Q.; Lv, L.; Tan, X.; Dai, W. Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity. Chem. Eng. J. 2021, 419, 129609. [Google Scholar] [CrossRef]
- Di, S.; Feng, F.; Han, H.; Ma, Z. Prominent adsorption performance of amino-functionalized ultra-light graphene aerogel for methyl orange and amaranth. Chem. Eng. J. 2017, 324, 1–9. [Google Scholar]
- Sun, J.; Hwang, J.Y.; Jankowski, P.; Xiao, L.; Jankowski, P. Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Li-S Batteries. Small 2021, 17, 2007242. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Yuan, X.; Ren, R.; Lv, Y. A self-prepared graphene oxide/sodium alginate aerogel as biological carrier to improve the performance of a heterotrophic nitrifier. Biochem. Eng. J. 2021, 171, 108027. [Google Scholar] [CrossRef]
- Malik, S.; Gul, I.H.; Baig, M.M. Hierarchical MnNiCo ternary metal oxide/graphene nanoplatelets composites as high rated electrode material for Supercapacitors. Ceram. Int. 2021, 47, 17008–17014. [Google Scholar] [CrossRef]
- Shaikh, J.S.; Shaikh, N.S.; Mishra, Y.K.; Pawar, S.S.; Parveen, N.; Shewale, P.M.; Sabale, S.; Kanjanaboos, P.; Praserthdam, S.; Lokhande, C.D. The implementation of graphene-based aerogel in the field of supercapacitor. Nanotechnology 2021, 32, 362001–362023. [Google Scholar] [CrossRef] [PubMed]
- Kuila, T.; Bose, S.; Chang, E.H.; Uddin, M.E.; Khanra, P.; Kim, N.H.; Lee, J.H. Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 2011, 49, 1033–1037. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym. Test. 2012, 31, 31–38. [Google Scholar] [CrossRef]
- Mortazavi, B.; Fan, Z.; Pereira, L.; Harju, A.; Rabczuk, T. Amorphized graphene: A stiff material with low thermal conductivity. Carbon 2016, 103, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.C.; Wi, J.H.; Ri, N.C.; Ri, S.I. Thermal conductivity of graphene/graphane/graphene heterostructure nanoribbons: Non-equilibrium molecular dynamics simulations. Solid State Commun. 2021, 328, 114249. [Google Scholar] [CrossRef]
- Lza, B.; Xin, X.C.; Cca, B.; Bca, B. Facile synthesis of porous CoFe2O4 /graphene aerogel for catalyzing efficient removal of organic pollutants. Sci. Total Environ. 2021, 775, 143398. [Google Scholar]
- Liu, H.; Gao, B.; Yuan, W.; Li, H.; Chen, Z. Modification of graphene aerogel with titania nanotubes for efficient methylene blue adsorption kinetics. J. Sol-Gel Sci. Technol. 2021, 97, 271–280. [Google Scholar] [CrossRef]
- Huang, J.; Huang, X.; He, M.; Zhang, B.; Feng, G.; Yin, G.; Cui, Y. Control of graphene aerogel self-assembly in strongly acidic solution via solution polarity tuning. RSC Adv. 2019, 9, 21155–21163. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Richardson, G.F.; Meng, Q.; Zhu, S.; Ma, J. PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology 2015, 27, 042001. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Q.; Fan, Z. A Mini Review: Application Progress of Magnetic Graphene Three-Dimensional Materials for Water Purification. Front. Chem. 2020, 8, 595643. [Google Scholar] [CrossRef]
- Kim, J.; Cote, L.J.; Kim, F.; Yuan, W.; Shull, K.R.; Huang, J. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Chen, J.; Zhu, X.; Li, H.; Huang, S.; Hu, Y.; Qi, C.; Zhong, S. Graphene oxide as a sacrificial material for fabricating molecularly imprinted polymer via Pickering emulsion polymerization. RSC Adv. 2016, 6, 74654–74661. [Google Scholar] [CrossRef]
- Song, X.; Yang, Y.; Liu, J.; Zhao, H. PS colloidal particles stabilized by graphene oxide. Langmuir 2011, 27, 1186–1191. [Google Scholar] [CrossRef]
- Kulkarni, A.; Jana, S.C. Surfactant-free syndiotactic polystyrene aerogel foams via Pickering emulsion. Polymer 2020, 212, 123125. [Google Scholar] [CrossRef]
- Ji, C.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229. [Google Scholar]
- Dai, J.; Zhang, R.; Ge, W.; Xie, A.; Chang, Z.; Tian, S.; Zhou, Z.; Yan, Y. 3D macroscopic superhydrophobic magnetic porous carbon aerogel converted from biorenewable popcorn for selective oil-water separation. Mater. Des. 2018, 139, 122–131. [Google Scholar] [CrossRef]
- Jian, H.; Zhao, H.; Li, X.; Dong, S.; Zhang, F.; Ji, H.; Rui, L. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J. Hazard. Mater. 2018, 346, 199–207. [Google Scholar]
- Zhao, L.; Lian, L.; Wang, Y.; Wu, J.; Meng, G.; Liu, Z.; Guo, X. Preparation and characterization of thermo- and pH dual-responsive 3D cellulose-based aerogel for oil/water separation. Appl. Phys. A 2018, 124, 9. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Liu, Q.; Fan, Z.; Liang, T.; Tong, Q.; Fu, Y. Fabrication of PDMS/GA Composite Materials by Pickering Emulsion Method and Its Application for Oil-Water Separation. Energies 2021, 14, 5283. https://doi.org/10.3390/en14175283
Wang B, Liu Q, Fan Z, Liang T, Tong Q, Fu Y. Fabrication of PDMS/GA Composite Materials by Pickering Emulsion Method and Its Application for Oil-Water Separation. Energies. 2021; 14(17):5283. https://doi.org/10.3390/en14175283
Chicago/Turabian StyleWang, Biao, Qingwang Liu, Zhenzhong Fan, Ting Liang, Qilei Tong, and Yuanfeng Fu. 2021. "Fabrication of PDMS/GA Composite Materials by Pickering Emulsion Method and Its Application for Oil-Water Separation" Energies 14, no. 17: 5283. https://doi.org/10.3390/en14175283
APA StyleWang, B., Liu, Q., Fan, Z., Liang, T., Tong, Q., & Fu, Y. (2021). Fabrication of PDMS/GA Composite Materials by Pickering Emulsion Method and Its Application for Oil-Water Separation. Energies, 14(17), 5283. https://doi.org/10.3390/en14175283