Protection Systems for DC Shipboard Microgrids
Abstract
:1. Introduction
2. DC Shipboard Structure
Comparison with Terrestrial DC MGs
3. DC Fault Features and Protection Requirements
- System grounding: the grounding solutions of DC shipboards are comparable with the terrestrial AC systems; however, the grounding place is different. Because the DC ships are expected to continue electrical services during single earth faults, a high resistance DC-link grounding scheme is conceived to be implemented [33].
- Output filter effects: during a fault, the converter’s output filter (L-filter for current source converters and C-filter for voltage source converters (VSC)) is charged by considerable energy, which should be dissipated [34].
- Dependency on the topology of converters: the fault current is dependent on the topology of converters [35]. The current can reach zero in the current-controlled thyristor bridge topology and block the generator from injected current to the faulty point [36]. However, the generator can continue to inject current to faulty points through the freewheeling diodes in IGBT-based VSCs until activation of its own AC protection [37].
- Lack of zero-crossing point: the arc blocking is a difficult stage in DC systems due to the lack of zero-crossing point. Therefore, the traditional AC CBs cannot be installed directly in DC systems, and new fault isolation devices should be developed [38].
- High-rise transient discharge: in DC shipboards, due to the low Ohmic resistance, the fault current is raised to a high value, and the whole system is impacted by approximately the same severity of fault current [39]; this challenges the operation time and selectivity of the protection system.
3.1. Fault Contributions from Sources
3.1.1. Electrical Machines
3.1.2. ESSs
3.2. DC Shipboard Protection Challenges and Requirements
3.2.1. Sensor Requirements
3.2.2. Timing Requirements
3.2.3. Selectivity Challenges and Requirements
3.2.4. Communication Requirements
3.2.5. Standardization Requirements
4. Fault Detection in DC Shipboards
4.1. Overcurrent Schemes
4.2. Current Waveform-Based Schemes
4.3. Artificial Neural Network (ANN)-Based Schemes
4.4. Other Schemes
5. Fault Location in DC Shipboards
5.1. Impedance-Based Schemes
5.2. Converter-Based Schemes
5.3. Other Schemes
6. Fault Isolation in DC Shipboards
6.1. Breaker-Based Schemes
6.2. Breaker-Less Schemes
7. Conclusions, Solutions, and Future Recommendations
- Fault detection scheme: due to the limitations of traditional methods, the ANN-based methods can be implemented in new all-electric DC shipboards to detect faults more accurately, quickly, and reliably than existing current waveform-based techniques.
- Fault location and isolation scheme: due to the recent developments on the converters and high penetration of DC/DC and AC/DC converters in DC shipboards, the fault location and isolation techniques can be carried out by installed converters to reduce the cost and size of the system. Moreover, the converter-based solution will have higher operation speed and functionality with the help of new control and fault-current-limiting methods in novel converters.
- The DC shipboard MGs operation is different from terrestrial DC MGs. Therefore, before designing a protection system, detailed modeling of the DC shipboard MG is essential to consider its various operation requirements and modes.
- Most fault detection schemes consider the voltage and current sensors as ideal devices. Due to the rapid high-rise fault current in DC shipboards, these sensors could be saturated or damaged. These sensors also have some delays and may not arcuately replicate the fault current waveform. Moreover, designing local fault detection methods can reduce the cost of the fault detection unit, requiring sensors in both ends of the line, and avoid more delays.
- The fault isolators are another important challenge in the implementation of protection systems in DC shipboard MGs. The breaker-based CBs have larger components, higher weights, and are ineffective at higher fault current rates. Since the DC shipboards have weight and space limitations, the breaker-less schemes might be a better solution. However, these schemes also have some limitations, such as less survivability, inability to be implemented in all lines, and limited fault current tolerance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yousefizadeh, S.; Bendtsen, J.D.; Vafamand, N.; Khooban, M.H.; Dragičević, T.; Blaabjerg, F. EKF-based predictive stabilization of shipboard DC microgrids with uncertain time-varying load. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 7, 901–909. [Google Scholar] [CrossRef]
- Hossain, M.R.; Ginn, H.L. Real-time distributed coordination of power electronic converters in a DC shipboard distribution system. IEEE Trans. Energy Convers. 2017, 32, 770–778. [Google Scholar] [CrossRef]
- Bayati, N.; Baghaee, H.R.; Hajizadeh, A.; Soltani, M.; Lin, Z. Mathematical morphology-based local fault detection in DC Microgrid clusters. Electr. Power Syst. Res. 2021, 192, 106981. [Google Scholar] [CrossRef]
- Kardan, M.A.; Asemani, M.H.; Khayatian, A.; Vafamand, N.; Khooban, M.H.; Dragičević, T.; Blaabjerg, F. Improved stabilization of nonlinear dc microgrids: Cubature kalman filter approach. IEEE Trans. Ind. Appl. 2018, 54, 5104–5112. [Google Scholar] [CrossRef] [Green Version]
- Domaschk, L.N.; Ouroua, A.; Hebner, R.E.; Bowlin, O.E.; Colson, W.B. Coordination of large pulsed loads on future electric ships. IEEE Trans. Magn. 2007, 43, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Bayati, N.; Hajizadeh, A.; Soltani, M.; Lin, Z. A Distribution-Sensitive Poverty Index-Based Protection Scheme for Interconnected DC Microgrids. In Proceedings of the 15th International Conference on Developments in Power System Protection, Liverpool, UK, 9–12 March 2020; IET Digital Library: London, UK, 2020; pp. 1–6. [Google Scholar]
- Jin, C.; Wang, P.; Xiao, J.; Tang, Y.; Choo, F.H. Implementation of hierarchical control in DC microgrids. IEEE Trans. Ind. Electron. 2013, 61, 4032–4042. [Google Scholar] [CrossRef]
- Ericsen, T.; Hingorani, N.; Khersonsky, Y. Power electronics and future marine electrical systems. IEEE Trans. Ind. Appl. 2006, 4, 155–163. [Google Scholar] [CrossRef]
- Ulissi, G.; Lee, S.Y.; Dujic, D. Solid-state bus-tie switch for shipboard power distribution networks. IEEE Trans. Transp. Electrif. 2020, 6, 1253–1264. [Google Scholar] [CrossRef]
- Bayati, N.; Hajizadeh, A.; Soltani, M. Protection in DC microgrids: A comparative review. IET Smart Grid 2018, 1, 66–75. [Google Scholar] [CrossRef]
- Jayamaha, D.K.; Lidula, N.W.; Rajapakse, A.D. Protection and grounding methods in DC microgrids: Comprehensive review and analysis. Renew. Sustain. Energy Rev. 2020, 120, 109631. [Google Scholar] [CrossRef]
- Flourentzou, N.; Agelidis, V.G.; Demetriades, G.D. VSC-based HVDC power transmission systems: An overview. IEEE Trans. Power Electron. 2009, 24, 592–602. [Google Scholar] [CrossRef]
- Bayati, N.; Baghaee, H.R.; Hajizadeh, A.; Soltani, M. Localized protection of radial DC microgrids with high penetration of constant power loads. IEEE Syst. J. 2020, 15, 4145–4156. [Google Scholar] [CrossRef]
- Mohanty, R.; Pradhan, A.K. DC ring bus microgrid protection using the oscillation frequency and transient power. IEEE Syst. J. 2018, 13, 875–884. [Google Scholar] [CrossRef]
- Naik, J.; Dhar, S.; Dash, P.K. Adaptive differential relay coordination for PV DC microgrid using a new kernel based time-frequency transform. Int. J. Electr. Power Energy Syst. 2019, 106, 56–67. [Google Scholar] [CrossRef]
- Shamsoddini, M.; Vahidi, B.; Razani, R.; Mohamed, Y.A. A novel protection scheme for low voltage DC microgrid using inductance estimation. Int. J. Electr. Power Energy Syst. 2020, 120, 105992. [Google Scholar] [CrossRef]
- Bayati, N.; Baghaee, H.R.; Hajizadeh, A.; Soltani, M. A Fuse Saving Scheme for DC Microgrids with High Penetration of Renewable Energy Resources. IEEE Access 2020, 8, 137407–137417. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Jin, Z.; Savaghebi, M.; Vasquez, J.C.; Meng, L.; Guerrero, J.M. Maritime DC microgrids-a combination of microgrid technologies and maritime onboard power system for future ships. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 179–184. [Google Scholar]
- Jin, Z.; Sulligoi, G.; Cuzner, R.; Meng, L.; Vasquez, J.C.; Guerrero, J.M. Next-generation shipboard dc power system: Introduction smart grid and dc microgrid technologies into maritime electrical netowrks. IEEE Electrif. Mag. 2016, 4, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Mosayebi, M.; Khooban, M.H. A Robust Shipboard DC-DC Power Converter Control: Concept Analysis and Experimental Results. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2612–2616. [Google Scholar] [CrossRef]
- Ghimire, P.; Park, D.; Zadeh, M.K.; Thorstensen, J.; Pedersen, E. Shipboard electric power conversion: System architecture, applications, control, and challenges (technology leaders). IEEE Electrif. Mag. 2019, 7, 6–20. [Google Scholar] [CrossRef]
- Corvus Energy. CASE STUDY: Norled AS, MF Ampere, Ferry. Available online: http://corvusenergy.com/wpcontent/uploads/2015/09/Corvus-Energy-CASE-STUDY_NorledAmpere_JUNE-2015.pdf (accessed on 30 June 2015).
- Kankanala, P.; Srivastava, S.C.; Srivastava, A.K.; Schulz, N.N. Optimal control of voltage and power in a multi-zonal MVDC shipboard power system. IEEE Trans. Power Syst. 2012, 27, 642–650. [Google Scholar] [CrossRef]
- Huang, M.; Ding, L.; Li, W.; Chen, C.Y.; Liu, Z. Distributed Observer-Based H∞ Fault-Tolerant Control for DC Microgrids with Sensor Fault. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1659–1670. [Google Scholar] [CrossRef]
- Sulligoi, G.; Bosich, D.; Pelaschiar, R.; Lipardi, G.; Tosato, F. Shore-to-ship power. Proc. IEEE 2015, 103, 2381–2400. [Google Scholar] [CrossRef]
- Riccobono, A.; Cupelli, M.; Monti, A.; Santi, E.; Roinila, T.; Abdollahi, H.; Arrua, S.; Dougal, R.A. Stability of shipboard dc power distribution: Online impedance-based systems methods. IEEE Electrif. Mag. 2017, 5, 55–67. [Google Scholar] [CrossRef]
- Pratap, S.; Ouroua, A.; Hebner, R. Integration of an electromagnetic gun power supply into a ship power system. In Electric Ship Research and Development Consortium; Tech. Rep. PN-292; University Texas Austin: Austin, TX, USA, 2013. [Google Scholar]
- Hebner, R.E.; Uriarte, F.M.; Kwasinski, A.; Gattozzi, A.L.; Estes, H.B.; Anwar, A.; Cairoli, P.; Dougal, R.A.; Feng, X.; Chou, H.-M.; et al. Technical cross-fertilization between terrestrial microgrids and ship power systems. J. Mod. Power Syst. Clean Energy 2015, 4, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Cupelli, M.; Ponci, F.; Sulligoi, G.; Vicenzutti, A.; Edrington, C.S.; El-Mezyani, T.; Monti, A. Power flow control and network stability in an all-electric ship. Proc. IEEE 2015, 103, 2355–2380. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yu, Z.; He, J.; Chen, S.; Zeng, R.; Zhang, B. Performance of shipboard medium-voltage DC system of various grounding modes under monopole ground fault. IEEE Trans. Ind. Appl. 2015, 51, 5002–5009. [Google Scholar] [CrossRef]
- Nelson, J.P.; Burns, D.; Seitz, R.; Leoni, A. The grounding of marine power systems: Problems and solutions. In Proceedings of the Fifty-First Annual Conference 2004 Petroleum and Chemical Industry Technical Conference, San Francisco, CA, USA, 13–15 September 2004; pp. 151–161. [Google Scholar]
- IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships, IEEE Standard 1709–2010. November 2010. pp. 1–54. Available online: arts.units.it/handle/11368/2305876 (accessed on 30 June 2021).
- Staudt, V.; Bartelt, R.; Heising, C. Fault scenarios in DC ship grids: The advantages and disadvantages of modular multilevel converters. IEEE Electrific. Mag. 2015, 3, 40–48. [Google Scholar] [CrossRef]
- Tang, L.; Ooi, B.T. Locating and isolating DC faults in multiterminal DC systems. IEEE Trans. Power Del. 2007, 22, 1877–1884. [Google Scholar] [CrossRef]
- Yang, J.; Fletcher, J.E.; O’Reilly, J. Short-circuit and ground fault analyses and location in VSC-based DC network cables. IEEE Trans. Ind. Electron. 2012, 59, 3827–3837. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Fletcher, J.E.; O’Reilly, J. Multiterminal DC wind farm collection grid internal fault analysis and protection design. IEEE Trans. Power Del. 2010, 25, 2308–2318. [Google Scholar] [CrossRef] [Green Version]
- Bayati, N.; Hajizadeh, A.; Soltani, M. Accurate modeling of DC microgrid for fault and protection studies. In Proceedings of the 2018 International Conference on Smart Energy Systems and Technologies (SEST), Seville, Spain, 10–12 September 2018; pp. 1–6. [Google Scholar]
- Zhou, Z.; Jiang, J.; Ye, S.; Liu, C.; Zhang, D. A Г-Source Circuit Breaker for DC Microgrid Protection. IEEE Trans. Ind. Electron. 2020, 68, 2310–2320. [Google Scholar] [CrossRef]
- Salomonsson, D.; Söder, L.; Sannino, A. Protection of low voltage DC microgrids. IEEE Trans. Power Del. 2009, 24, 1045–1053. [Google Scholar] [CrossRef]
- Li, X.; Song, Q.; Liu, W.; Zhu, Z.; Xu, S. Experiment on DC-fault ride through of MMC using a half-voltage clamp submodule. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1273–1279. [Google Scholar] [CrossRef]
- Bayati, N.; Hajizadeh, A.; Soltani, M. Impact of faults and protection methods on DC microgrids operation. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–6. [Google Scholar]
- Shuai, Z.; He, D.; Xiong, Z.; Lei, Z.; Shen, Z.J. Comparative study of short-circuit fault characteristics for VSC-based dc distribution networks with different distributed generators. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 7, 528–540. [Google Scholar] [CrossRef]
- Jia, K.; Wang, C.; Bi, T.; Zhu, R.; Xuan, Z. Transient current waveform similarity-based protection for flexible DC distribution system. IEEE Trans. Ind. Electron. 2019, 66, 9301–9311. [Google Scholar] [CrossRef]
- Bayati, N.; Hajizadeh, A.; Soltani, M. Localized fault protection in the DC microgrids with ring configuration. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 136–140. [Google Scholar]
- Feng, X.; Qi, L.; Wang, Z. Estimation of short circuit currents in mesh DC networks. In Proceedings of the 2014 IEEE PES General Meeting|Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- Berizzi, A.; Silvestri, A.; Zaninelli, D.; Massucco, S. Short-circuit current calculations for DC systems. IEEE Trans. Ind. Appl. 1996, 32, 990–997. [Google Scholar] [CrossRef]
- Nahas, E.W.; Abd el-Ghany, H.A.; Mansour, D.E.; Eissa, M.M. Extensive analysis of fault response and extracting fault features for DC microgrids. Alex. Eng. J. 2021, 60, 2405–2420. [Google Scholar] [CrossRef]
- Meghwani, A.; Srivastava, S.C.; Chakrabarti, S. A non-unit protection scheme for DC microgrid based on local measurements. IEEE Trans. Power Deliv. 2016, 32, 172–181. [Google Scholar] [CrossRef]
- Howlader, A.M.; Matayoshi, H.; Sepasi, S.; Senjyu, T. Design and line fault protection scheme of a DC microgrid based on battery energy storage system. Energies 2018, 11, 1823. [Google Scholar] [CrossRef] [Green Version]
- Tzelepis, D.; Dysko, A.; Fusiek, G.; Nelson, J.; Niewczas, P.; Vozikis, D.; Orr, P.; Gordon, N.; Booth, C.D. Single-ended differential protection in MTDC networks using optical sensors. IEEE Trans. Power Del. 2017, 32, 1605–1615. [Google Scholar] [CrossRef] [Green Version]
- Farjah, E.; Givi, H.; Ghanbari, T. Application of an efficient Rogowski coil sensor for switch fault diagnosis and capacitor ESR monitoring in nonisolated single-switch DC–DC converters. IEEE Trans. Power Electron. 2016, 32, 1442–1456. [Google Scholar] [CrossRef]
- Satpathi, K.; Yeap, Y.M.; Ukil, A.; Geddada, N. Short-time Fourier transform based transient analysis of VSC interfaced point-to-point DC system. IEEE Trans. Ind. Electron. 2017, 65, 4080–4091. [Google Scholar] [CrossRef]
- Wang, M.; Abedrabbo, M.; Leterme, W.; van Hertem, D. A review on AC and DC protection equipment and technologies: Towards multivendor solution. In Proceedings of the CIGRE Winnipeg 2017 Colloquium, Winnipeg, MB, Canada, 30 Septenber–6 October 2017. [Google Scholar]
- Bhargav, R.; Bhalja, B.R.; Gupta, C.P. Algorithm for fault detection and localisation in a mesh-type bipolar DC microgrid network. IET Gener. Transm. Distrib. 2019, 13, 3311–3322. [Google Scholar] [CrossRef]
- Ha, H.; Subramanian, S. Implementing the protection and control of future DC grids. Alstom Grid Technol. Cent. Innov. Technol. Dep. 2015. Available online: https://www.think-grid.org/sites/default/files/Implementing%20the%20protection%20and%20control%20of%20future%20DC%20grids_Subramanian.pdf (accessed on 30 June 2021).
- Fletcher, S.D.A.; Norman, P.J.; Galloway, S.J.; Crolla, P.; Burt, G.M. Optimizing the roles of unit and non-unit protection methods within DC microgrids. IEEE Trans. Smart Grid 2012, 3, 2079–2087. [Google Scholar] [CrossRef] [Green Version]
- Brahma, S. Advancements in centralized protection and control within a substation. IEEE Trans. Power Del. 2016, 31, 1945–1952. [Google Scholar] [CrossRef]
- Vrana, T.K.; Yang, Y.; Jovcic, D.; Dennetière, S.; Jardini, J.; Saad, H. The CIGRE B4 DC grid test system. Electra 2013, 270, 10–19. [Google Scholar]
- Som, S.; Samantaray, S.R. Efficient protection scheme for low-voltage DC micro-grid. IET Gener. Transm. Distrib. 2018, 12, 3322–3329. [Google Scholar] [CrossRef]
- Cairoli, P.; Dougal, R.A. Fault detection and isolation in medium-voltage DC microgrids: Coordination between supply power converters and bus contactors. IEEE Trans. Power Electron. 2017, 33, 4535–4546. [Google Scholar] [CrossRef]
- Li, J.; Yang, Q.; Mu, H.; Le Blond, S.; He, H. A new fault detection and fault location method for multi-terminal high voltage direct current of offshore wind farm. Appl. Energy 2018, 220, 13–20. [Google Scholar] [CrossRef]
- Bayati, N.; Aghaee, F.; Sadeghi, S.H. The adaptive and robust power system protection schemes in the presence of DGs. Int. J. Renew. Energy Res. 2019, 9, 732–740. [Google Scholar]
- Deng, Q.; Liu, X.; Soman, R.; Steurer, M.; Dougal, R.A. Primary and backup protection for fault current limited MVDC shipboard power systems. In Proceedings of the 2015 IEEE Electric Ship Technologies Symposium (ESTS), Old Town Alexandria, VA, USA, 21–24 June 2015; pp. 40–47. [Google Scholar]
- Kim, S.; Kim, S.N.; Dujic, D. Extending protection selectivity in dc shipboard power systems by means of additional bus capacitance. IEEE Trans. Ind. Electron. 2019, 67, 3673–3683. [Google Scholar] [CrossRef]
- Baran, M.E.; Teleke, S.; Bhattacharya, S. Overcurrent protection in DC zonal shipboard power systems using solid state protection devices. In Proceedings of the 2007 IEEE Electric Ship Technologies Symposium, Arlington, VA, USA, 21–23 May 2007; pp. 221–224. [Google Scholar]
- Satpathi, K.; Thukral, N.; Ukil, A.; Zagrodnik, M.A. Directional protection scheme for MVDC shipboard power system. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 3840–3847. [Google Scholar]
- Yao, X.; Herrera, L.; Ji, S.; Zou, K.; Wang, J. Characteristic study and time-domain discrete-wavelet-transform based hybrid detection of series DC arc faults. IEEE Trans. Power Electron. 2013, 29, 3103–3115. [Google Scholar] [CrossRef]
- Li, W.; Luo, M.; Monti, A.; Ponci, F. Wavelet based method for fault detection in medium voltage DC shipboard power systems. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012; pp. 2155–2160. [Google Scholar]
- Subramaniam, K.; Illindala, M.S. High impedance fault detection and isolation in DC microgrids. In Proceedings of the 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I&CPS), Calgary, AB, Canada, 5–8 May 2019; pp. 1–8. [Google Scholar]
- Maqsood, A.; Oslebo, D.; Corzine, K.; Parsa, L.; Ma, Y. STFT cluster analysis for DC pulsed load monitoring and fault detection on naval shipboard power systems. IEEE Trans. Transp. Electrif. 2020, 6, 821–831. [Google Scholar] [CrossRef]
- Abdali, A.; Mazlumi, K.; Noroozian, R. High-speed fault detection and location in DC microgrids systems using Multi-Criterion System and neural network. Appl. Soft Comput. 2019, 79, 341–353. [Google Scholar] [CrossRef]
- Xiang, W.; Yang, S.; Wen, J. ANN-based robust DC fault protection algorithm for MMC high-voltage direct current grids. IET Renew. Power Gener. 2020, 14, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Monti, A.; Ponci, F. Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks. IEEE Trans. Instrum. Meas. 2014, 63, 2651–2665. [Google Scholar] [CrossRef]
- Ma, Y.; Oslebo, D.; Maqsood, A.; Corzine, K. Dc Fault Detection and Pulsed Load Monitoring using Wavelet Transform-fed LSTM Autoencoders. IEEE J. Emerg. Sel. Top. Power Electron. 2020. [Google Scholar] [CrossRef]
- Oslebo, D.; Corzine, K.A.; Weatherford, T.; Maqsood, A. Fault Detection for Naval Pulsed-Energy Mission Loads Using a Novel Machine Learning Approach. Nav. Eng. J. 2021, 133, 69–81. [Google Scholar]
- Liu, S.; Sun, Y.; Zhang, L.; Su, P. Fault diagnosis of shipboard medium-voltage DC power system based on machine learning. Int. J. Electr. Power Energy Syst. 2021, 124, 106399. [Google Scholar] [CrossRef]
- Dong, D.; Pan, Y.; Lai, R.; Wu, X.; Weeber, K. Active fault-current foldback control in thyristor rectifier for DC shipboard electrical system. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 203–212. [Google Scholar] [CrossRef]
- Christopher, E.; Sumner, M.; Thomas, D.W.; Wang, X.; de Wildt, F. Fault location in a zonal DC marine power system using active impedance estimation. IEEE Trans. Ind. Appl. 2013, 49, 860–865. [Google Scholar] [CrossRef]
- Christopher, E.; Sumner, M.; Thomas, D.; de Wildt, F. Fault location for a DC zonal electrical distribution systems using active impedance estimation. In Proceedings of the 2011 IEEE Electric Ship Technologies Symposium, Alexandria, VA, USA, 10–13 April 2011; pp. 310–314. [Google Scholar]
- Jia, K.; Christopher, E.; Sumner, M.; Thomas, D. Fault location in DC marine power system using multiple injections. In Proceedings of the 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 11–14 November 2012; pp. 1–4. [Google Scholar]
- Jia, K.; Christopher, E.; Thomas, D.; Sumner, M.; Bi, T. Advanced DC zonal marine power system protection. IET Gener. Transm. Distrib. 2014, 8, 301–309. [Google Scholar] [CrossRef]
- Pan, Y.; Silveira, P.M.; Steurer, M.; Baldwin, T.L.; Ribeiro, P.F. A fault location approach for high-impedance grounded DC shipboard power distribution systems. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6. [Google Scholar]
- Pan, Y.; Steurer, M.; Baldwin, T. Feasibility study of noise pattern analysis based ground fault locating method for ungrounded dc shipboard power distribution systems. In Proceedings of the 2009 IEEE Electric Ship Technologies Symposium, Baltimore, MD, USA, 20–22 April 2009; pp. 18–22. [Google Scholar]
- Ford, B.; Leonard, I.; Bosworth, M.; Steurer, M. Grounding and fault location in power electronic based MVDC shipboard power and energy systems. In Proceedings of the 2017 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 14–17 August 2017; pp. 359–366. [Google Scholar]
- Chanda, N.K.; Fu, Y. ANN-based fault classification and location in MVDC shipboard power systems. In Proceedings of the 2011 North American Power Symposium, Boston, MA, USA, 4–6 August 2011; pp. 1–7. [Google Scholar]
- Mair, A.J.; Davidson, E.M.; McArthur, S.D.; Srivastava, S.K.; Schoder, K.; Cartes, D.A. Machine learning techniques for diagnosing and locating faults through the automated monitoring of power electronic components in shipboard power systems. In Proceedings of the 2009 IEEE Electric Ship Technologies Symposium, Baltimore, MD, USA, 20–22 April 2009; pp. 469–476. [Google Scholar]
- Diendorfer, C.; Haslwanter, J.D.; Stanovich, M.; Schoder, K.; Sloderbeck, M.; Ravindra, H.; Steurer, M. Graph traversal-based automation of fault detection, location, and recovery on MVDC shipboard power systems. In Proceedings of the 2017 IEEE Second International Conference on DC Microgrids (ICDCM), Nuremburg, Germany, 27–29 June 2017; pp. 119–124. [Google Scholar]
- Liu, L.; Logan, K.P.; Cartes, D.A.; Srivastava, S.K. Fault detection, diagnostics, and prognostics: Software agent solutions. IEEE Trans. Veh. Technol. 2007, 56, 1613–1622. [Google Scholar] [CrossRef]
- Satpathi, K.; Ukil, A.; Pou, J. Short-circuit fault management in DC electric ship propulsion system: Protection requirements, review of existing technologies and future research trends. IEEE Trans. Transp. Electrif. 2017, 4, 272–291. [Google Scholar] [CrossRef]
- Cairoli, P.; Kondratiev, I.; Dougal, R.A. Coordinated control of the bus tie switches and power supply converters for fault protection in DC microgrids. IEEE Trans. Power Electron. 2013, 28, 2037–2047. [Google Scholar] [CrossRef]
- Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC microgrids—Part II: A review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 2016, 31, 3528–3549. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.L.; Antoniazzi, A.; Raciti, L.; Leoni, D. Design of solidstate circuit breaker-based protection for DC shipboard power systems. IEEE J. Emerg. Sel. Topics Power Electron. 2017, 5, 260–268. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, J.; Ye, S.; Yang, D.; Jiang, J. Novel Bidirectional O-Z-Source Circuit Breaker for DC Microgrid Protection. IEEE Trans. Power Electron. 2020, 36, 1602–1613. [Google Scholar] [CrossRef]
- Chang, A.H.; Sennett, B.R.; Avestruz, A.T.; Leeb, S.B.; Kirtley, J.L. Analysis and design of DC system protection using Z-source circuit breaker. IEEE Trans. Power Electron. 2015, 31, 1036–1049. [Google Scholar] [CrossRef]
- Maqsood, A.; Corzine, K.A. The Z-source breaker for ship power system protection. In Proceedings of the 2015 IEEE Electric Ship Technologies Symposium (ESTS), Old Town Alexandria, VA, USA, 21–24 June 2015; pp. 293–298. [Google Scholar]
- Corzine, K.A.; Ashton, R.W. Structure and analysis of the Z-source MVDC breaker. In Proceedings of the 2011 IEEE Electric Ship Technologies Symposium, Alexandria, VA, USA, 10–13 April 2011; pp. 334–338. [Google Scholar]
- Haleem, N.M.; Rajapakse, A.D.; Gole, A.M.; Fernando, I.T. Investigation of fault ride-through capability of hybrid VSC-LCC multi-terminal HVDC transmission systems. IEEE Trans. Power Deliv. 2018, 34, 241–250. [Google Scholar] [CrossRef]
- Liu, F.; Liu, W.; Zha, X.; Yang, H.; Feng, K. Solid-state circuit breaker snubber design for transient overvoltage suppression at bus fault interruption in low-voltage DC microgrid. IEEE Trans. Power Electron. 2016, 32, 3007–3021. [Google Scholar] [CrossRef]
- Xie, R.; Li, H. Fault performance comparison study of a dual active bridge (DAB) converter and an isolated modular multilevel DC/DC (iM2DC) converter for power conversion module application in a breaker-less shipboard MVDC system. IEEE Trans. Ind. Appl. 2018, 54, 5444–5455. [Google Scholar] [CrossRef]
Component | Capacity |
---|---|
Main switchboard | 1 kV |
Propulsion motor 2 and 3 | 2000 kW |
Propulsion motor 1 and 4 | 500 kW |
Fuel cell | 300 kW |
Battery | 1 kV, 300 kWh |
Generators | 690 V, 3000 kVA |
Characteristics | Terrestrial MGs | Shipboards |
---|---|---|
Cable insulation requirement | 100% | 173% |
Transient over-voltage | 2.5 | 2.7 |
Continuity of service | No | Yes |
Arc risk level | High | Very low |
High ground-fault current | Yes | No |
Category | Method | Advantages | Disadvantages |
---|---|---|---|
Overcurrent | [65] |
|
|
[66] |
|
| |
[67] |
|
| |
Current waveform-based | [69] |
|
|
[70] |
|
| |
[71] |
|
| |
ANN-based | [74] |
|
|
[75] |
|
| |
Other schemes | [76] |
|
|
[77] |
|
| |
[78] |
|
|
Category | Method | Advantages | Disadvantages |
---|---|---|---|
Impedance-based | [79,80,81,82] |
|
|
Converter-based | [83] |
|
|
[84] |
|
| |
[85] |
|
| |
Other schemes | [86] |
|
|
[87] |
|
| |
[88] |
|
|
Method | References | Advantages | Disadvantages |
---|---|---|---|
Breaker-based | [90,91,92,93,94,95,96,97] |
|
|
Breaker-less | [64,98,99,100] |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayati, N.; Savaghebi, M. Protection Systems for DC Shipboard Microgrids. Energies 2021, 14, 5319. https://doi.org/10.3390/en14175319
Bayati N, Savaghebi M. Protection Systems for DC Shipboard Microgrids. Energies. 2021; 14(17):5319. https://doi.org/10.3390/en14175319
Chicago/Turabian StyleBayati, Navid, and Mehdi Savaghebi. 2021. "Protection Systems for DC Shipboard Microgrids" Energies 14, no. 17: 5319. https://doi.org/10.3390/en14175319
APA StyleBayati, N., & Savaghebi, M. (2021). Protection Systems for DC Shipboard Microgrids. Energies, 14(17), 5319. https://doi.org/10.3390/en14175319