The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review
Abstract
:1. Introduction
- Identify the constraints in each stage of the DSSE process which are applicable to a LV area;
- Create an assembly of practical applications, pilot projects, and experiences.
2. Literature Review of DSSE Use-Cases
- The necessity for capital expenditure (CAPEX) intensive network developments due to the increasing share of distributed generation (mainly photovoltaics (PV)) and the increasing amount of connection requests, and
- Growing power usage.
3. Process-Oriented Review of DSSE
3.1. Observability Criteria
3.1.1. Classification of Meter Placement Techniques
3.1.2. Bad Data Detection
3.1.3. Pseudo Data Generation Techniques
3.2. Grid Models in DSSE, Practical Limitations of Model Topologies
3.3. Application Constraints of the Algorithms
4. Evaluation of Pilot Projects
Project and Location | Topology Scope | Algorithm | Use Case | Metered Data Source |
---|---|---|---|---|
VENTEEA–France [106,113] | MV | WLS + Weighted Least Absolute | Closed-loop voltage control, hosting capacity increase | U, P, Q sensors, MV/LV transformer measurements, remote-controlled pole switches |
Monica–Spain [103] | MV/LV | N/A (asymmetry consideration for LV) | Observability, non-technical loss identification | Smart meters, MV voltage sensors LV wide range of sensors (P, Q, U, I) |
Smart Area Aachen–Germany [51] | MV | N/A (Monte carlo error function) | Renewable integration, observability, situational awareness | P, Q, I, U sensors at MV/LV transformers |
UPGRID–Sweden [118] | MV/LV | N/A | Comparison and compatibility between different suppliers, network planning input, observability | RTU, fault indicators, smart meter |
evolvDSO–France [114,119] | MV/LV | LV–Neural network/(MV-OPF) | Flexibility calculation (MV), voltage monitoring (LV) | Smart meter, U sensors |
PRICE GDI–Spain [109] | MV | Hachtel Augmented Matrix Method | Hosting capacity increase | Generation measurements, Static compensators, RTU for MV/LV transformers |
Low carbon London–Great Britain [105] | MV | WLS | Technical loss calculation, meter placement calculation | MV/LV transformer U, P measurement |
A2A–Italy [120] | MV | N/A | Fault localization, loss of mains detection, local dispatch | MV PMU, generation measurements |
A.S.SE.M–Italy [121] | MV | N/A | Loss of mains detection, voltage control | MV PMU, generation measurements |
InteGRIDy–Italy [117,122] | MV | N/A | Loss reduction, storage operation enhancement, hosting capacity increase | Generation measurements, smart meter |
France [123] | MV | Heuristic power adjustment | Algorithm development | PMU |
Denmark [107] | MV | WLS | Minimal metering requirement calculation, improving pseudo measurements | PMU (end of the lines) |
Sustainable–Portugal, Greece [124] | MV | WLS | DSSE evaluation, renewable integration | Smart meters, PMU |
Korea, Canada [108] | MV | N/A | Event detection, voltage observation | Generation and energy storage measurements, PMU |
Belgium [38] | MV | N/A | PMU application verification | PMU |
ADMS4LV–Portugal [125] | LV | N/A | Phase connection verification | Smart meter |
Integrid–Portugal [126] | LV | N/A | Flexibility market enhancement | N/A |
RESOLVD [127] | LV | N/A | Power quality, renewable integration, flexibility management | PMU, smart meters, smart assets (e.g., storage) |
Slovenia [73] | LV | Extended Kalman filter | Algorithm test, EV charging integration, voltage control | U sensors, P-Q data for nodes |
SmartSCADA–Germany [45,110,115] | LV | Linear algorithm (from WLS) | Bad data detection | Smart meter |
evolvDSO–Portugal [114,128] | LV | Neural network, | Observability | Smart meter, U sensors |
LV SCADA–Portugal [129] | LV | Neural network, particle swarm optimization | Monitoring, observability | Smart meter, LV RTU, MV/LV On-line tap changing transformers |
UPGRID–Portugal [130] | LV | N/A | Visualization for operators, group error identification, coordination between operators and electricians | Smart voltage regulators |
UPGRID–Poland [104] | LV | N/A | Technical loss estimation, event detection | Fault indicators, Remote controlled pole switched, MV/LV transformer U, I measurements |
Switzerland [111] | LV | WLS | Asset management, grid development input | Smart meter, “Grid-eye” sensors (U, I) |
China [131] | MV | WLS-based | Use of multi-source measurements | Micro PMU, Smart meter |
USA [132] | MV | WLS-based | Voltage monitoring | MV sensors, Smart meters |
5. Conclusions and Outlook
- Outage management and power quality;
- Data analysis;
- Renewable and e-mobility integration.
- Coordinated control.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADMS | Advanced distribution management system |
CAPEX | Capital expenditure |
DG | Distributed generator |
DSSE | Distribution system state estimation |
DSO | Distribution system operator |
GDPR | General data protection regulation |
GIS | Geographical information system |
HSE | Hybrid State Estimation |
HV | High voltage |
LV | Low voltage |
MV | Medium voltage |
PMU | Phasor measurement unit |
PV | Photovoltaic |
RTU | Remote terminal unit |
SCADA | Supervisory control and data acquisition |
SE | State estimation |
TSO | Transmission system operator |
WLS | Weighted least square |
References
- Primadianto, A.; Lu, C.-N. A Review on Distribution System State Estimation. IEEE Trans. Power Syst. 2016, 32, 3875–3883. [Google Scholar] [CrossRef]
- Majdoub, M.; Boukherouaa, J.; Cheddadi, B.; Belfqih, A.; Sabri, O.; Haidi, T. A Review on Distribution System State Estimation Techniques. In Proceedings of the 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018; pp. 1–6. [Google Scholar]
- Dehghanpour, K.; Wang, Z.; Wang, J.; Yuan, Y.; Bu, F. A survey on state estimation techniques and challenges in smart dis-tribution systems. IEEE Trans. Smart Grid 2019, 10, 2312–2322. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Rasool, A.; Ozsoy, E.; Sekar, R.; Sabanovic, A.; Elitaş, M. Distribution system state estimation-A step towards smart grid. Renew. Sustain. Energy Rev. 2018, 81, 2659–2671. [Google Scholar] [CrossRef] [Green Version]
- López Gotti, I.; Lartategui Arteta, I.; Zubia Urrutia, H.; Sanz Heras, M.; González Ríos, J.; Sánchez Paniagua, A. Low voltage supervision system: Technology, applications, use cases and deployment. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED, 2019), Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Duarte, D.; Kondo, D.; Matsuzaki, F.; Guaraldo, J.; Souza, M.; Silva, H.; Ferreira, M.; Silva, R.; Brito, L.; Ross, R.; et al. Identification and evaluation of energy theft using the state estimator in medium-voltage and low-voltage grids with exogenous parameters for planning expansion. CIRED-Open Access Proc. J. 2017, 2017, 2320–2324. [Google Scholar] [CrossRef]
- Antoine, Q.; Uytterhoeven, S.; Pellichero, L. Applications of phasor measurement units in distribution grids—Practical return of experience. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED, 2019), Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Mingotti, A.; Peretto, L. 1550—Online Monitoring Leads to Improve the Reliability and Sustainability of Power. In Proceedings of the 25th International Conference on Electricity Distribution 774613 (CIRED 2020), Berlin, Germany, 20–23 September 2020. [Google Scholar]
- Sampaio, G.; Janeiro, C.; Pereira, J.; Seca, L.; Viegas, P.; Silva, N.; Rodrigues, A. DER and load allocation for an unbalanced distribution networks state estimator. In Proceedings of the 23rd International Conference on Electricity Distribution (CIRED 2015), Lyon, France, 15–18 June 2015; pp. 1–5. [Google Scholar]
- Jamali, S.; Bahmanyar, A. A new fault location method for distribution networks using sparse measurements. Int. J. Electr. Power Energy Syst. 2016, 81, 459–468. [Google Scholar] [CrossRef]
- Jamali, S.; Bahmanyar, A.; Bompard, E. Fault location method for distribution networks using smart meters. Meas. J. Int. Meas. Confed. 2017, 102, 150–157. [Google Scholar] [CrossRef]
- Liu, L.; He, J.H. Application of weighted least square algorithm in distribution network state estimation with finite measurement information. In Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China, 20–22 October 2014; pp. 134–138. [Google Scholar]
- Margossian, H.; Sayed, M.A.; Fawaz, W.; Nakad, Z. Partial grid false data injection attacks against state estimation. Int. J. Electr. Power Energy Syst. 2019, 110, 623–629. [Google Scholar] [CrossRef]
- Pau, M.; Ponci, F.; Monti, A.; Sulis, S.; Muscas, C.; Pegoraro, P.A. An Efficient and Accurate Solution for Distribution System State Estimation with Multiarea Architecture. IEEE Trans. Instrum. Meas. 2017, 66, 910–919. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Cobben, J.F.G. Improving operation of medium voltage grid with state estimator and advanced metering system. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Melo, I.D.; Pereira, J.L.; Ribeiro, P.F.; Variz, A.M.; Oliveira, B.C. Harmonic state estimation for distribution systems based on optimization models considering daily load profiles. Electr. Power Syst. Res. 2019, 170, 303–316. [Google Scholar] [CrossRef]
- Ye, G.; Nijhuis, M.; Cuk, V.; Cobben, J. Incorporating network uncertainties in voltage dip state estimation. Int. J. Electr. Power Energy Syst. 2019, 113, 888–896. [Google Scholar] [CrossRef]
- Kubis, A.; Boller, M.; Kempler, J.; Uhlig, R.; Stiegler, M.; Stötzel, M. Enhancing operational awareness of distribution system operators with a semi-autonomous intelligent grid control suite. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED 2019), Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Matsukawa, Y.; Watanabe, M.; Mitani, Y.; Othman, M.L. Multi-objective PMU placement optimization considering the placement cost including the current channel allocation and state estimation accuracy. Electr. Eng. Jpn. 2019, 207, 20–27. [Google Scholar] [CrossRef]
- Raposo, A.A.M.; Rodrigues, A.; Silva, M. Optimal meter placement algorithm for state estimation in power distribution networks. Electr. Power Syst. Res. 2017, 147, 22–30. [Google Scholar] [CrossRef]
- Xie, N.; Torelli, F.; Bompard, E.; Vaccaro, A. A graph theory based methodology for optimal PMUs placement and multiarea power system state estimation. Electr. Power Syst. Res. 2015, 119, 25–33. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, H.; Li, P.; Kong, X.; Wu, J.; Wang, C. Optimal placement of PMUs and communication links for distributed state estimation in distribution networks. Appl. Energy 2019, 256, 113963. [Google Scholar] [CrossRef]
- Kandenkavil, S.V.; Bhattacharya, K. Optimization Approaches to Distribution System State Estimation for Optimal Meter Placement. In Proceedings of the 2018 IEEE Electrical Power and Energy Conference (EPEC), Toronto, ON, Canada, 10–11 October 2018; pp. 1–6. [Google Scholar]
- Attar, M.Z.; Namdari, F.; Aghaei, J.; Zohour, A.M. Optimal placement of phasor measurement units in the presence SCADA meters and considering the sensitivity constraints in Khouzestan province network. In Proceedings of the 2015 International Congress on Electric Industry Automation (ICEIA 2015), Shiraz, Iran, 24–25 February 2015; pp. 21–26. [Google Scholar] [CrossRef]
- Chen, X.; Lin, J.; Wan, C.; Song, Y.; You, S.; Zong, Y.; Guo, W.; Li, Y. Optimal Meter Placement for Distribution Network State Estimation: A Circuit Representation Based MILP Approach. IEEE Trans. Power Syst. 2016, 31, 4357–4370. [Google Scholar] [CrossRef]
- Almunif, A.; Fan, L. Optimal PMU placement for modeling power grid observability with mathematical programming methods. Int. Trans. Electr. Energy Syst. 2020, 30, 1–13. [Google Scholar] [CrossRef]
- Moradi-Sepahvand, M.; Mashhour, E.; Mortazavi, S.S. Optimal placement of a combination of single-phase and three-phase μPMUs for observability of smart distribution networks with asymmetrical structure. Int. J. Electr. Power Energy Syst. 2019, 105, 592–601. [Google Scholar] [CrossRef]
- Shahriar, M.S.; Habiballah, I.O.; Hussein, H. Optimization of Phasor Measurement Unit (PMU) Placement in Supervisory Control and Data Acquisition (SCADA)-Based Power System for Better State-Estimation Performance. Energies 2018, 11, 570. [Google Scholar] [CrossRef] [Green Version]
- Hubschneider, S.; Uhrig, M.; Suriyah, M.; Leibfried, T. Optimized meter placement in low voltage grids based on asymmetric state estimation. In Proceedings of the 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 29 August– 1 September 2017; pp. 1–6. [Google Scholar]
- Yao, Y.; Liu, X.; Li, Z. Robust Measurement Placement for Distribution System State Estimation. IEEE Trans. Sustain. Energy 2019, 10, 364–374. [Google Scholar] [CrossRef]
- Al-Anbarri, K.A.; Hasan, M.F. Optimal placement of meters for power system state estimation by using artificial intellegence techniques, a comparative study. J. Eng. Sustain. Dev. 2018, 2018, 15–32. [Google Scholar] [CrossRef]
- Parpaei, M.; Ghaffarzadeh, N.; Tayar, M.Z. Rational random walk-based optimal placement of phasor measurement units to enhance the initializing and guiding the optimization processes. Int. Trans. Electr. Energy Syst. 2017, 27, e2323. [Google Scholar] [CrossRef]
- Álvarez, M.; Sellschopp-Sanchez, F.-S.; Vazquez, E. A PMUs placement methodology based on inverse of connectivity and critical measurements. Int. J. Electr. Power Energy Syst. 2015, 68, 336–344. [Google Scholar] [CrossRef]
- Ramachandran, B.; Bellarmine, G.T. Improving observability using optimal placement of phasor measurement units. Int. J. Electr. Power Energy Syst. 2014, 56, 55–63. [Google Scholar] [CrossRef]
- Shoaib Shahriar, M.; Ahmad, F.A.; Habiballah, I.O.; Asif, M.A.; Mukherjee, S. Artificial Bee Colony based Optimal PMU Placement in Power System State Estimation. In Proceedings of the 1st International Conference on. Advanced Information and. Communication Technology 2016 (ICAICT 2016), Chittagong, Bangladesh, 16–17 May 2016. [Google Scholar]
- Xia, N.; Gooi, H.B.; Chen, S.; Wang, M. Redundancy based PMU placement in state estimation. Sustain. Energy Grids Netw. 2015, 2, 23–31. [Google Scholar] [CrossRef]
- Abur, A.; Expósito, A.G. Power System State Estimation: Theory and Implementation; Marcel Dekker, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Uytterhoeven, S.; Hoornaert, K.; Willems, D. Benefits of Phasor Measurement Units for Distribution Grid State Estimation: Practical Experience from an Urban Demonstrator. In Proceedings of the 23rd International Conference on Electricity Distribution (CIRED 2015), Lyon, France, 15–18 June 2015; pp. 15–18. [Google Scholar]
- Ju, Y.; Sheng, W.; Song, X.; Wang, J.; Wu, W. Multi-phase distribution state estimation with only direct measurements. In Proceedings of the 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, 26–29 November 2015; pp. 2690–2694. [Google Scholar]
- Richter, M.; Komarnicki, P.; Hauer, I. Improving state estimation in smart distribution grid using synchrophasor technology: A comparison study. Arch. Electr. Eng. 2018, 67, 469–483. [Google Scholar]
- Manousakis, N.M.; Korres, G.N. A hybrid power system state estimator using synchronized and unsynchronized sensors. Int. Trans. Electr. Energy Syst. 2018, 28, e2580. [Google Scholar] [CrossRef]
- Mosbah, H.; El-Hawary, M. Optimization of neural network parameters by Stochastic Fractal Search for dynamic state estimation under communication failure. Electr. Power Syst. Res. 2017, 147, 288–301. [Google Scholar] [CrossRef]
- Saran, M.A.; Miranda, V. State estimation pre-filtering with overlapping tiling of autoencoders. Electr. Power Syst. Res. 2018, 157, 261–271. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Srivastava, A.K. Data-Quality Aware State Estimation in Three-Phase Unbalanced Active Distribution System. In Proceedings of the 2018 IEEE Industry Applications Society Annual Meeting (IAS), Portland, OR, USA, 23–27 September 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Waeresch, D.; Brandalik, R.; Wellssow, W.; Jordan, J.; Bischler, R.; Schneider, N. Bad data processing for low voltage state estimation systems based on smart meter data. In Proceedings of the CIRED Workshop 2016, Helsinki, Finland, 14–15 June 2016; p. 47. [Google Scholar] [CrossRef] [Green Version]
- Othman, M.M.; Ahmed, M.; Salama, M. A novel smart meter technique for voltage and current estimation in active distribution networks. Int. J. Electr. Power Energy Syst. 2018, 104, 301–310. [Google Scholar] [CrossRef]
- Su, H.; Wang, C.; Liu, Z.; Wu, J.; Li, P. Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent. Appl. Energy 2019, 250, 302–312. [Google Scholar] [CrossRef]
- Cramer, M.; Goergens, P.; Potratz, F.; Schnettler, A.; Willing, S. Impact of three-phase pseudo-measurement generation from smart meter data on distribution grid state estimation. In Proceedings of the 23rd International Conference on Electricity Distribution (CIRED, 2015), Lyon, France, 15–18 June 2015; pp. 1–5. [Google Scholar]
- Alves, J.; Pereira, J. Pseudo-Measurements Generation Using Energy Values from Smart Metering Devices. In Proceedings of the CIRED Workshop 2016, Helsinki, Finland, 14–15 June 2016; p. 140. [Google Scholar] [CrossRef] [Green Version]
- Dobbe, R.; Arnold, D.; Liu, S.; Callaway, D.; Tomlin, C. Real-Time Distribution Grid State Estimation with Limited Sensors and Load Forecasting. In Proceedings of the 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), Vienna, Austria, 11–14 April 2016; pp. 1–10. [Google Scholar]
- Echternacht, D.; Franken, M.; Moser, A.; Geulen, U.; Zimmer, P.; Feilhauer, W.; Schrieder, W. Smart Area Aachen—In field test of meter placement and state estimation algorithms for distribution grids. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 5–7 October 2015; pp. 435–439. [Google Scholar]
- Pau, M.; Pegoraro, P.A.; Monti, A.; Muscas, C.; Ponci, F.; Sulis, S. Impact of Current and Power Measurements on Distribution System State Estimation Uncertainty. IEEE Trans. Instrum. Meas. 2018, 68, 3992–4002. [Google Scholar] [CrossRef]
- Shafiei, M.; Nourbakhsh, G.; Arefi, A.; Ledwich, G.; Pezeshki, H. Single iteration conditional based DSSE considering spatial and temporal correlation. Int. J. Electr. Power Energy Syst. 2019, 107, 644–655. [Google Scholar] [CrossRef]
- Teixeira, H.; Messias, A.A.; Pereira Barbeiro, P.N.; Lopes, D.A.; Pereira, J.; Matos, P.G. Using LV real-time data for pseudo-measurements generation in MV distribution networks. In Proceedings of the 23rd International Conference on Electricity Distribution (CIRED 2015), Lyon, France, 15–18 June 2015; pp. 1–5. [Google Scholar]
- Abdel-Majeed, A.; Kattmann, C.; Tenbohlen, S.; Saur, R. Usage of Artificial Neural Networks for pseudo measurement modeling in low voltage distribution systems. In Proceedings of the 2014 IEEE PES General Meeting|Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- Cheng, G.; Song, S.; Lin, Y.; Huang, Q.; Lin, X.; Wang, F. Enhanced state estimation and bad data identification in active power distribution networks using photovoltaic power forecasting. Electr. Power Syst. Res. 2019, 177, 105974. [Google Scholar] [CrossRef]
- Macii, D.; Barchi, G.; Moser, D. Impact of PMUs on state estimation accuracy in active distribution grids with large PV penetration. In Proceedings of the 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings, Trento, Italy, 9–10 July 2015; pp. 72–77. [Google Scholar]
- Thukaram, D.; Jerome, J.; Surapong, C. A robust three-phase state estimation algorithm for distribution networks. Electr. Power Syst. Res. 2000, 55, 191–200. [Google Scholar] [CrossRef]
- Abood, H.G.; Sreeram, V.; Mishra, Y. A new algorithm for improving the numerical stability of power system state estimation. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 358–365. [Google Scholar] [CrossRef]
- Ranković, A.; Maksimović, B.M.; Sarić, A.T. A three-phase state estimation in active distribution networks. Int. J. Electr. Power Energy Syst. 2014, 54, 154–162. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Wu, L. State Estimation of Three-Phase Four-Conductor Distribution Systems with Real-Time Data from Selective Smart Meters. IEEE Trans. Power Syst. 2019, 34, 2632–2643. [Google Scholar] [CrossRef]
- Chusovitin, P.; Polyakov, I.; Pazderin, A. Three-phase state estimation model for distribution grids. In Proceedings of the 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE), Eilat, Israel, 16–18 November 2016; pp. 1–5. [Google Scholar]
- Chen, S.; Wei, Z.; Sun, G.; Lu, N.; Sun, Y.; Zhu, Y. Multi-area distributed three-phase state estimation for unbalanced active distribution networks. J. Mod. Power Syst. Clean Energy 2016, 5, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, B.; Bicevskis, K.; Scott, R.; Negnevitsky, M. Evaluation of single-and three-phase state estimation in distribution networks. In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, VIC, Australia, 19–22 November 2017; pp. 1–5. [Google Scholar]
- Blazic, B.; Antoncic, M. LV Network State Estimation Using Decoupled Load-flow Algorithm. In Proceedings of the CIRED Workshop (CIRED: 2018), Ljubljana, Slovenia, 7–8 June 2018; pp. 7–8. [Google Scholar]
- Švenda, G.; Strezoski, V.; Kanjuh, S. Real-life distribution state estimation integrated in the distribution management system. Int. Trans. Electr. Energy Syst. 2017, 27, e2296. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Z.; Guo, Y.; Zhao, C.; Huang, J.; Chen, L. Gradient-Based Multi-Area Distribution System State Estimation. IEEE Trans. Smart Grid 2020, 11, 5325–5338. [Google Scholar] [CrossRef]
- Eghbali, O.; Kazemzadeh, R.; Amiri, K. Multi-Area State Estimation Based on PMU Measurements in Distribution Networks. J. Oper. Autom. Power Eng. 2019, 8, 1. [Google Scholar] [CrossRef]
- Binot, F.; Le, T.; Petit, M. A three-phase four-wire state estimator algorithm for low voltage networks management. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED 2019), Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Rasmussen, T.B.; Yang, G.; Nielsen, A.H. Interval estimation of voltage magnitude in radial distribution feeder with minimal data acquisition requirements. Int. J. Electr. Power Energy Syst. 2019, 113, 281–287. [Google Scholar] [CrossRef]
- Brandalik, R.; Wellssow, W.-H. Power system state estimation with extended power formulations. Int. J. Electr. Power Energy Syst. 2020, 115, 105443. [Google Scholar] [CrossRef]
- Abdel-Majeed, A.; Tenbohlen, S.; Rudion, K. Effects of state estimation accuracy on the voltage control of low voltage grids. In Proceedings of the 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST), Vienna, Austria, 8–11 September 2015; pp. 526–530. [Google Scholar]
- Antončič, M.; Papič, I.; Blažič, B. Robust and Fast State Estimation for Poorly-Observable Low Voltage Distribution Networks Based on the Kalman Filter Algorithm. Energies 2019, 12, 4457. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Kumar, D.V. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks. Eng. Sci. Technol. Int. J. 2017, 20, 922–933. [Google Scholar] [CrossRef]
- Pavão, R.K.; Homma, R.Z.; dos Santos, T.T.; Chumbinho, R.; Lemos FA, B.; Khairalla, I.K. Fuzzy state estimation applied to smart distribution network automation functions. In Proceedings of the 23rd International Conference on Electricity Distribution (CIRED 2015), Lyon, France, 15–18 June 2015; pp. 1–5. [Google Scholar]
- Ahmad, F.; Tariq, M.; Farooq, A. A novel ANN-based distribution network state estimator. Int. J. Electr. Power Energy Syst. 2019, 107, 200–212. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G.; Giannakis, G.B. Real-Time Power System State Estimation and Forecasting via Deep Unrolled Neural Networks. IEEE Trans. Signal Process. 2019, 67, 4069–4077. [Google Scholar] [CrossRef] [Green Version]
- Menke, J.-H.; Bornhorst, N.; Braun, M. Distribution system monitoring for smart power grids with distributed generation using artificial neural networks. Int. J. Electr. Power Energy Syst. 2019, 113, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Mestav, K.R.; Luengo-Rozas, J.; Tong, L. State Estimation for Unobservable Distribution Systems via Deep Neural Networks. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Tungadio, D.H.-S.; Jordaan, J.A.; Siti, M.W. Power system state estimation solution using modified models of PSO algorithm: Comparative study. Meas. J. Int. Meas. Confed. 2016, 92, 508–523. [Google Scholar] [CrossRef]
- Iwata, S.; Fukuyama, Y. Differential evolutionary particle swarm optimization for load adjustment distribution state estimation using correntropy. Electr. Eng. Jpn. 2018, 205, 11–21. [Google Scholar] [CrossRef]
- Basetti, V.; Chandel, A.K.; Chandel, R. Power system dynamic state estimation using prediction based evolutionary technique. Energy 2016, 107, 29–47. [Google Scholar] [CrossRef]
- Azuma, D.; Fukuyama, Y.; Jintsugawa, T.; Fujimoto, H.; Matsui, T. Improved Brain Storm Optimization with Differential Evolution strategies for Load Adjustment Distribution State Estimation Using Correntropy. IFAC-PapersOnLine 2019, 52, 449–454. [Google Scholar] [CrossRef]
- Kalpanadevi, M.; Neela, R. BBO Algorithm for Line Flow Based WLS State Estimation. Mater. Today Proc. 2018, 5, 318–328. [Google Scholar] [CrossRef]
- Khorshidi, R.; Shabaninia, F.; Niknam, T. A new smart approach for state estimation of distribution grids considering renewable energy sources. Energy 2016, 94, 29–37. [Google Scholar] [CrossRef]
- Lu, Z.; Wei, Z.; Sun, Y. Power system dynamic state estimation considering correlation of measurement error from PMU and SCADA. Concurr. Comput. Pr. Exp. 2019, 31, e4726. [Google Scholar] [CrossRef]
- Huang, S.-C.; Lu, C.-N.; Lo, Y.-L. Evaluation of AMI and SCADA Data Synergy for Distribution Feeder Modeling. IEEE Trans. Smart Grid 2015, 6, 1639–1647. [Google Scholar] [CrossRef]
- Brüggemann, A.; Görner, K.; Rehtanz, C. Evaluation of extended Kalman filter and particle filter approaches for quasi-dynamic distribution system state estimation. CIRED–Open Access Proc. J. 2017, 2017, 1755–1758. [Google Scholar] [CrossRef] [Green Version]
- Ćetenović, D.N.; Ranković, A.M. Optimal parameterization of Kalman filter based three-phase dynamic state estimator for active distribution networks. Int. J. Electr. Power Energy Syst. 2018, 101, 472–481. [Google Scholar] [CrossRef]
- Goleijani, S.; Ameli, M.T. Neural network-based power system dynamic state estimation using hybrid data from SCADA and phasor measurement units. Int. Trans. Electr. Energy Syst. 2018, 28, e2481. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, X.; Yong, C.; Ma, X.; Yu, L. Distributed State Estimation for Distribution Network with Phasor Measurement Units Information. Energy Procedia 2019, 158, 4129–4134. [Google Scholar] [CrossRef]
- Dzafic, I.; Huseinagic, I. Real Time Distribution System State Estimation Based on Interior Point Method. Southeast Eur. J. Soft Comput. 2014, 3, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Korres, G.N. A Distributed Multiarea State Estimation. IEEE Trans. Power Syst. 2011, 26, 73–84. [Google Scholar] [CrossRef]
- Francy, R.C.; Farid, A.M.; Youcef-Toumi, K. Event triggered state estimation techniques for power systems with integrated variable energy resources. ISA Trans. 2015, 56, 165–172. [Google Scholar] [CrossRef]
- Issicaba, D.; Costa, A.S.; Colombo, J.L. Real-Time Monitoring of Points of Common Coupling in Distribution Systems Through State Estimation and Geometric Tests. IEEE Trans. Smart Grid 2015, 7, 9–18. [Google Scholar] [CrossRef]
- Tsitsimelis, A.; Antón-Haro, C. A regularized state estimation scheme for a robust monitoring of the distribution grid. Int. J. Electr. Power Energy Syst. 2020, 117, 105621. [Google Scholar] [CrossRef]
- Huang, M.; Wei, Z.; Sun, G.; Zang, H. Hybrid State Estimation for Distribution Systems with AMI and SCADA Measurements. IEEE Access 2019, 7, 120350–120359. [Google Scholar] [CrossRef]
- Liu, M. State estimation in a smart distribution system. HKIE Trans. 2017, 24, 1–8. [Google Scholar] [CrossRef]
- Weisenstein, M.; Wellssow, W.H.; Brandalik, R. Investigation and comparison of different methods for lv grid state estimation considering privacy issues. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED, 2019), Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Xygkis, T.C.; Manousakis, N.; Korres, G.; Hatziargyriou, N. Distribution Grid State Estimation Using Load Pseudomeasurements and Topology Identification Techniques. In Proceedings of the 23rd International Conference on Electricity Distribution (CIRED, 2015), Lyon, France, 15–18 June 2015; pp. 1–5. [Google Scholar]
- Caro, E. Uncertainty analysis of power system state estimates and reference bus selection. Electr. Power Syst. Res. 2016, 136, 322–330. [Google Scholar] [CrossRef]
- Yu, L.; Kong, X.; Chen, Y. Internal state estimation for distribution network with PMU measurement information. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 1149–1153. [Google Scholar]
- Almeida, B.; Santos, R.J. MONICA—Advanced monitoring and control in MV and LV distribution networks. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED 2019), Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Noske, S.; Falkowski, D.; Swat, K.; Boboli, T. UPGRID project: The management and control of LV network. CIRED-Open Access Proc. J. 2017, 2017, 1520–1522. [Google Scholar] [CrossRef] [Green Version]
- Dragovic, J.; Djapic, P.; Bilton, M.J.; Pudjianto, D.; Strbac, G. Application of Distribution System State Estimation on Engineering Instrumentation Zones of Low Carbon London. In Proceedings of the 23rd International Conference on Electricity Distribution (CIRED 2015), Lyon, France, 15–18 June 2015; pp. 1–5. [Google Scholar]
- Croteau, D.; Carre, O. Distribution state estimation: Outcomes from a field implementation aimed at tackling MV mastering in the presence of distributed energy resources (DER). CIRED-Open Access Proc. J. 2017, 2017, 1715–1717. [Google Scholar] [CrossRef]
- Pokhrel, B.R.; Bak-Jensen, B.; Pillai, J.R. Integrated Approach for Network Observability and State Estimation in Active Distribution Grid. Energies 2019, 12, 2230. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.; Kim, J. Development and field test result of KEPCO distribution management system. In Proceedings of the CIRED Workshop 2018 (CIRED 2018), Ljubljana, Slovenia, 7–8 June 2018; pp. 1–5. [Google Scholar]
- González, R.; Bocos, M.; Romero, J.; Díaz ME, I.; Gastalver, A. State estimation in MV distribution networks: Experience in the Spanish smart grid project PRICE-GDI. In Proceedings of the CIGRÉ 2016, Paris, France, 21–26 August 2016. [Google Scholar]
- Waeresch, D.; Brandalik, R.; Wellssow, W.H.; Jordan, J.; Bischler, R.; Schneider, N. Linear state estimation in low voltage grids based on smart meter data. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, Netherlands, 29 June–2 July 2015; pp. 1–6. [Google Scholar]
- Eggenschwiler, L.; Nauts, O.; Favre-perrod, P.; Rampazzo, J.; Mousavi, A.O. Performance evaluation of distribution system state estimator using different measurement devices. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED, 2019), Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Silva, N.; Silva, P.M.; Pereira, J.; Seca, L.; Melo, F.; Madureira, A. LV SCADA—How to effectively manage LV networks with limited topology and electrical characteristics data. In Proceedings of the 23rd International Conference on Electricity Distribution (CIRED 2015), Lyon, France, 15–18 June 2015; pp. 1–5. [Google Scholar]
- Kamga, K.; Carre, O. Voltage management in the presence of distributed energy resources—Field implementation of a robust distribution state estimator with errors in sensor data. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED, 2019), Madrid, Spain, 3–6 June 2019; pp. 1–4. [Google Scholar]
- Teixeira, H.; Barbeiro, P.P.; Pereira, J.; Bessa, R.; Matos, P.; Lemos, D.; Morais, A.; Caujolle, M.; Sebastian-Viana, M. A State Estimator for LV Networks: Results from the EvolvDSO Project. In Proceedings of the CIRED Workshop 2016, Helsinki, Finland, 14–15 June 2016; p. 136. [Google Scholar] [CrossRef] [Green Version]
- Waeresch, D.; Brandalik, R.; Wellssow, W.H.; Jordan, J.; Bischler, R.; Schneider, N. Field test of a linear three-phase low-voltage state estimation system based on smart meter data. CIRED-Open Access Proc. J. 2017, 2017, 1773–1776. [Google Scholar] [CrossRef] [Green Version]
- Biener, W.; Killinger, S.; Wille-Haussmann, B.; Wittwer, C. Modelling active and reactive power of PV-systems as input for State Estimation. In Proceedings of the 4th Solar Integration Workshop: International Workshop on Integration of Solar Power into Power, Berlin, Germany, 10–11 November 2014. [Google Scholar]
- Falabretti, D.; Delfanti, M.; Merlo, M. Distribution networks’ observability: A novel approach and its experimental test. Sustain. Energy, Grids Netw. 2018, 13, 56–65. [Google Scholar] [CrossRef]
- Etherden, N.; Johansson, A.K.; Ysberg, U.; Kvamme, K.; Pampliega, D.; Dryden, C. Enhanced LV supervision by combining data from meters, secondary substation measurements and medium voltage supervisory control and data acquisition. CIRED-Open Access Proc. J. 2017, 2017, 1089–1093. [Google Scholar] [CrossRef]
- Sebastian, M.V.; Caujolle, M.; Maraver, B.G.; Pereira, J.; Sumaili, J.; Barbeiro, P.; Silva, J.; Bessa, R. LV state estimation and TSO–DSO cooperation tools: Results of the French field tests in the evolvDSO project. CIRED-Open Access Proc. J. 2017, 2017, 1883–1887. [Google Scholar] [CrossRef] [Green Version]
- Delfanti, M.; Fasciolo, E.; Olivieri, V.; Pozzi, M. A2A project: A practical implementation of smart grids in the urban area of Milan. Electr. Power Syst. Res. 2015, 120, 2–19. [Google Scholar] [CrossRef]
- Delfanti, M.; Falabretti, D.; Fiori, M.; Merlo, M. Smart Grid on field application in the Italian framework: The A.S.SE.M. project. Electr. Power Syst. Res. 2015, 120, 56–69. [Google Scholar] [CrossRef]
- Falabretti, D.; Moncecchi, M.; Mirbagheri, M.; Bovera, F.; Fiori, M.; Merlo, M.; Delfanti, M. San Severino Marche Smart Grid Pilot within the InteGRIDy project. Energy Procedia 2018, 155, 431–442. [Google Scholar] [CrossRef]
- Menke, J.-H.; Hegemann, J.; Gehler, S.; Braun, M. Heuristic monitoring method for sparsely measured distribution grids. Int. J. Electr. Power Energy Syst. 2018, 95, 146–155. [Google Scholar] [CrossRef]
- Pereira, J.; Barbeiro, P.P.; Teixeira, H.; Korres, G.; Themistoklis, X.; Nikolaos, M.; Koukoula, D.; Moutis, P. Advanced Local Distribution Grid Monitoring/State-Estimation. Delivarable 3.3. of the Project Sustainable. 2012. Available online: https://repositorio-aberto.up.pt/bitstream/10216/83284/2/44855.pdf (accessed on 18 August 2021).
- Kotsalos, K.; Simoes, A.; Marques, L.; Campos, F.; Sampaio, G.; Gouveia, C.; Pereira, J.; Seca, L.; Teixeira, H. (ADMS4LV)–Improved observability of LV grids based on advanced analytics. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED 2019), Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Costa, J.; Rua, D.; Moreira, J.; Fonseca, D.; Trocato, C.; Madureira, A. LV network control architecture: H2020 INTEGRID case study. In Proceedings of the CIRED Workshop 2018 (CIRED 2018), Ljubljana, Slovenia, 7–8 June 2018; pp. 1–4. [Google Scholar]
- Frigola, J.M.; Tuiskula, H.; Gallart, R. Resolvd—Renewable Penetration Levered by Efficient Low Voltage Distribution Grids Specifcations and Use Case Analysis. In Proceedings of the 25th International Conference & Exhibition on Electricity Distribution, Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Fonseca, N.; Silva, J.P.; Silva, A.; Sumaili, J.; Seca, L.; Bessa, R.; Pereira, J.; Matos, M.; Matos, P.; Morais, A.; et al. EvolvDSO grid management tools to support TSO-DSO cooperation. In Proceedings of the CIRED Workshop 2016, Helsinki, Finland, 14–15 June 2016; p. 72. [Google Scholar] [CrossRef] [Green Version]
- Barbeiro, P.; Pereira, J.; Teixeira, H.; Seca, L.; Silva, P.; Silva, N.; Melo, F. LV SCADA Project: In-Field Validation of a Distribution State Estimation Tool for LV Networks. In Proceedings of the CIRED Workshop 2016, Helsinki, Finland, 14–15 June 2016; p. 134. [Google Scholar] [CrossRef] [Green Version]
- Pires, R.; Louro, M.; Calado, H.; Nunes, P.; Almeida, B. Improved supervision and control of the lv portuguese network. In Proceedings of the 25th International Conference on Electricity Distribution (CIRED, 2019), Madrid, Spain, 3–6 June 2019; pp. 1–5. [Google Scholar]
- He, X.; Li, C.; Du, M.; Dong, H.; Li, P. Hybrid Measurements Based Fast State Estimation for Power Distribution System. IEEE Access 2021, 9, 21122–21129. [Google Scholar]
- Schoene, J.; Humayun, M. The Challenges of Distribution System State Estimation. IEEE Smart Grid Community Webinars. 2021. Available online: https://smartgrid.ieee.org/resources/webinars/distribution/case-study-the-challenges-of-distribution-system-state-estimation (accessed on 18 August 2021).
Outage Management and Power Quality | Data Analysis | Renewable and E-Mobility Integration | Coordinated Control |
---|---|---|---|
Human workforce management | Profile creation | Curtailment | Power electronic controllers (distribution level) |
Outage information handling (single & group faults) | Feeder detection | P-Q control setpoint | On-load tap changing distribution transformers |
Fault localization, short circuit power estimation | Phase detection | Pattern analysis | Energy storage |
Voltage limit violations | Loss monitoring | Accurate estimation | Demand side management |
Asymmetry | Non-technical loss identification | Hosting capacity calculation | Voltage regulators |
Ref. | PMU Placement Objective | Optimization Algorithm |
---|---|---|
[31] | SE error minimization | particle swarm opt., artificial bee colony |
[32] | minimize no. of PMUs | rational random walk |
[33] | minimize no. of critical measurements and maximize redundancy | optimization using unreachability index |
[34] | satisfy observability criteria | fruit fly optimization |
[35] | minimize no. of PMUs | artificial bee colony |
[36] | maximize redundancy | integer linear programming |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Táczi, I.; Sinkovics, B.; Vokony, I.; Hartmann, B. The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review. Energies 2021, 14, 5363. https://doi.org/10.3390/en14175363
Táczi I, Sinkovics B, Vokony I, Hartmann B. The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review. Energies. 2021; 14(17):5363. https://doi.org/10.3390/en14175363
Chicago/Turabian StyleTáczi, István, Bálint Sinkovics, István Vokony, and Bálint Hartmann. 2021. "The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review" Energies 14, no. 17: 5363. https://doi.org/10.3390/en14175363
APA StyleTáczi, I., Sinkovics, B., Vokony, I., & Hartmann, B. (2021). The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review. Energies, 14(17), 5363. https://doi.org/10.3390/en14175363