Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Analysis Tool
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPPC. Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme; IGES Pub.: Hayama, Japan, 2006; Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 15 June 2021).
- Xu, X. The Carbon Footprint Analysis of Wastewater Treatment Plants and Nitrous Oxide Emissions from Full-Scale Biological Nitrogen Removal Processes in Spain. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013. [Google Scholar]
- IPCC. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Parravicini, V.; Svardal, K.; Krampe, J. Greenhouse Gas Emission form Wastewater Treatment Plants. Energy Procedia 2016, 97, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.; de Hass, D.; Hartley, K.; Lant, P. Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res. 2010, 4, 1654–1666. [Google Scholar] [CrossRef] [PubMed]
- Maktabifard, M.; Zaborowska, E.; Mąkinia, J. Evaluating the effect of different operational strategies on the carbon footprint of wastewater treatment plants—Case studies from northern Poland. Water Sci. Technol. 2019, 79, 2211–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cakir, F.Y.; Stenstrom, M.K. Greenhouse Gas Production: A Comparison between Aerobic and Anaerobic Wastewater Treatment Technology. Water Res. 2005, 39, 4197–4203. [Google Scholar] [CrossRef]
- Global Water Research Coalition. N2O and CH4 Emission from Wastewater Collection and Treatment Systems; Technical Report; Global Water Research Coalition: London, UK, 2011; ISBN 9789077622247. [Google Scholar]
- Law, Y.; Jacobsen, G.E.; Smith, A.M.; Yuan, Z.; Lant, P. Fossil organic carbon in wastewater and its fate in treatment plants. Water Res. 2013, 47, 5270–5281. [Google Scholar] [CrossRef]
- Longo, S.; d’Antoni, B.M.; Bongards, M.; Chaparro, A.; Cronrath, A.; Fatone, F.; Lema, J.M.; Mauricio-Iglesias, M.; Soares, A.; Hospido, A. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl. Energy 2016, 179, 1251–1268. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Sun, S.; Sun, D. Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China. Int. Biodeterior. 2016, 108, 108–114. [Google Scholar] [CrossRef]
- Yerushalmi, L.; Ashrafi, O.; Haghighat, F. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants. Water Sci. Technol. 2013, 67, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Sweetapple, C.; Fu, G.; Butler, D. Does carbon reduction increase sustainability? A study in wastewater treatment. Water Res. 2015, 87, 522–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamais, D.; Noutsopoulos, C.; Dimopoulou, A.; Stasinakis, A.; Lekkas, T.D. Wastewater treatment process impact on energy savings and greenhouse gas emissions. Water Sci. Technol. 2015, 71, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I. Energy Effciency Strategies for Municipal Wastewater Treatment Facilities; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2012. Available online: www.nrel.gov (accessed on 19 December 2020).
- Li, W.; Li, L.; Qiu, G. Energy consumption and economic cost of typical wastewater treatment systems in Shenzhen, China. J. Clean. Prod. 2017, 163, 374–378. [Google Scholar] [CrossRef]
- Nowak, O.; Enderle, P.; Varbanov, P. Ways to optimize the energy balance of municipal wastewater systems: Lessons learned from Austrian applications. J. Clean. Prod. 2015, 88, 125–131. [Google Scholar] [CrossRef]
- Pasqualino, J.C.; Meneses, M.; Castells, F. Life cycle assessment of urban wastewater reclamation and reuse alternatives. J. Ind. Ecol. 2010, 15, 49–63. [Google Scholar] [CrossRef]
- Żyłka, R.; Karolinczak, B.; Dąbrowski, W. Structure and indicators of electric energy consumption in dairy wastewater treatment plant. Sci. Total Environ. 2021, 782, 146599. [Google Scholar] [CrossRef]
- Struk-Sokołowska, J.; Mielcarek, A.; Wiater, J.; Rodziewicz, J. Impacts of dairy wastewater and pre-aeration on the performance of SBR treating municipal sewage. Desalin. Water Treat. 2018, 105, 1944–3994. [Google Scholar] [CrossRef]
- Struk-Sokołowska, J.; Rodziewicz, J.; Mielcarek, A. Effect of dairy wastewater on changes in COD fractions in technical-scale SBR type reactors. Water Sci. Technol. 2018, 1, 156–169. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Bartkowska, I.; Walery, M. Effect of low-temperature conditioning of excess dairy sewage sludge with the use of solidified carbon dioxide on the efficiency of methane fermentation. Energies 2021, 14, 150. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Kazimierowicz, J. Evaluation of Anaerobic Digestion of Dairy Wastewater in an Innovative Multi-Section Horizontal Flow Reactor. Energies 2020, 13, 2392. [Google Scholar] [CrossRef]
- Descoins, N.; Deleris, S.; Lestienne, R.; Trouvé, E.; Maréchal, F. Energy efficiency in waste water treatments plants: Optimization of activated sludge process coupled with anaerobic digestion. Energy 2012, 41, 153–164. [Google Scholar] [CrossRef]
- Umiejewska, K. Biological anaerobic-aerobic treatment of dairy wastewater. In Proceedings of the 15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Żyłka, R. Modelling and Optimization of Electricity Consumption in a Dairy Wastewater Treatment Plant. Ph.D. Thesis, Bialystok University of Technology, Białystok, Poland, 2019. [Google Scholar]
- Dąbrowski, W.; Żyłka, R.; Malinowski, P. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant. Environ. Res. 2017, 153, 135–139. [Google Scholar] [CrossRef] [PubMed]
- CFCT 2014 Carbon Footprint Calculation Tool. Available online: https://va-tekniksodra.se/2014/11/carbon-footprint-calculation-tool-for-wwtps-now-available-in-english/ (accessed on 15 June 2021).
- Kampschreuer, M.J.; Temmink, H.; Kleerebezem, R.; Jetten, M.S.M.; van Loosdrecht, M.C.N. Nitrous oxide emission during wastewater treatment. Water Res. 2009, 43, 4093–4103. [Google Scholar] [CrossRef] [PubMed]
- Law, Y.; Ye, L.; Yuting, P.; Yuan, Z. Nitrous oxide emissions from wastewater treatment processes. Phil. Trans. R. Soc. B 2012, 367, 1265–1277. [Google Scholar] [CrossRef] [Green Version]
- Daelman, M.R.J.; van Voorthuizen, E.M.; van Dongen, L.G.J.M.; Volcke, E.I.P.; van Loosdrecht, M.C.M. Methane emission during municipal wastewater treatment. Water Res. 2012, 46, 3657–3670. [Google Scholar] [CrossRef] [PubMed]
- Daelman, M.R.J.; van Voorthuizen, E.M.; van Dongen, L.G.J.M.; Volcke, E.I.P.; van Loosdrecht, M.C.M. Methane and nitrous oxide emissions form municipal waste water treatment—results from a long-term study. Water Sci. Technol. 2013, 67, 2350–2355. [Google Scholar] [CrossRef] [PubMed]
- IPPC. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. International Panel of Climate Change. 1999. Available online: http://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_2_CH4_N2O_Waste_Water.pdf (accessed on 1 July 2021).
- Maktabifard, M.; Zaborowska, E.; Mąkinia, J. Energy neutrality versus carbon footprint minimalization in municipal wastewater treatment plants. Bioresour. Technol. 2020, 300, 122647. [Google Scholar]
- UK Water Industry Research Limited. Workbook for Estimating Operational GHG Emissions, Volume 3; UK Water Industry Research Limited: London, UK, 2009. [Google Scholar]
- Chai, C.; Zhang, D.; Yu, Y.; Feng, Y.; Wong, M.S. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China. Water 2015, 7, 918–938. [Google Scholar] [CrossRef]
- Zaborowska, E.; Czerwionka, K.; Mąkinia, J. Integrated plant-wide modelling for evaluation of the energy balance and greenhouse gas footprint in large wastewater treatment plants. Appl. Energy 2021, 282, 116126. [Google Scholar] [CrossRef]
Process | Advantages | Disadvantages |
---|---|---|
Anaerobic stabilisation |
|
|
Aerobic stabilisation |
|
|
Parameters | Unit | Influent Parameters | Effluent Parameters | Effluent Standards |
---|---|---|---|---|
BOD5 | mgO2 L−1 | 1582 | 16 | 25 |
COD | mgO2 L−1 | 2166 | 66 | 125 |
TN | mg L−1 | 93 | 11 | 30 |
TP | mg L−1 | 19 | 2 | 2 |
Unit | Current Scenario | Alternative Scenario | |
---|---|---|---|
Total carbon footprint: | t CO2e a−1 | 376 | 768 |
energy use | t CO2e a−1 | 175 | 259 |
wastewater treatment | t CO2e a−1 | 237 | 288 |
recipient | t CO2e a−1 | 0 | 0 |
chemicals | t CO2e a−1 | 8 | 8 |
transport | t CO2e a−1 | 9 | 9 |
sludge use | t CO2e a−1 | −53 | −53 |
biogas use | t CO2e a−1 | 0 | 257 |
Unit carbon footprint | kg CO2e PE−1 a−1 | 22 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karolinczak, B.; Dąbrowski, W.; Żyłka, R. Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis. Energies 2021, 14, 5366. https://doi.org/10.3390/en14175366
Karolinczak B, Dąbrowski W, Żyłka R. Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis. Energies. 2021; 14(17):5366. https://doi.org/10.3390/en14175366
Chicago/Turabian StyleKarolinczak, Beata, Wojciech Dąbrowski, and Radosław Żyłka. 2021. "Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis" Energies 14, no. 17: 5366. https://doi.org/10.3390/en14175366
APA StyleKarolinczak, B., Dąbrowski, W., & Żyłka, R. (2021). Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis. Energies, 14(17), 5366. https://doi.org/10.3390/en14175366