Towards a Circular Economy: Analysis of the Use of Biowaste as Biosorbent for the Removal of Heavy Metals
Abstract
:1. Introduction
2. Biowaste
2.1. Preparation of Biowaste
2.2. Agricultural Biowaste
2.3. Wood Biowaste
2.4. Biowaste from Fisheries
2.5. Desorption of Biosorbent
2.6. Application of Biosorbents and Perspectives
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christis, M.; Athanassiadis, A.; Vercalsteren, A. Implementation at a city level of circular economy strategies and climate change mitigation—The case of Brussels. J. Clean. Prod. 2019, 218, 511–520. [Google Scholar] [CrossRef]
- Ahmadi, M. Evaluating the performance of 3Rs waste practices: Case study-region one municipality of Tehran. Adv. Recycl. Waste Manag. 2017, 2, 2. [Google Scholar] [CrossRef]
- Huang, B.; Wang, X.; Kua, H.; Geng, Y.; Bleischwitz, R.; Ren, J. Construction and demolition waste management in China through the 3R principle. Resour. Conserv. Recycl. 2018, 129, 36–44. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the circular economy. J. Ind. Ecol. 2013, 2, 23–44. [Google Scholar]
- Ellen MacArthur Foundation. Towards a Circular Economy: Business Rationale for an Accelerated Transition. 2015. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/TCE_Ellen-MacArthur-Foundation_26-Nov-2015.pdf (accessed on 7 May 2020).
- EEA. Circular Economy in Europe—Developing the Knowledge Base. Copenhagen: European Environment Agency. 2016. Available online: http://www.eea.europa.eu/publications/circular-economy-in-europe (accessed on 10 July 2021).
- Abid, M.; Niazi, N.K.; Bibi, I.; Farooqi, A.; Ok, Y.S.; Kunhikrishnan, A.; Ali, F.; Ali, S.; Igalavithana, A.D.; Arshad, M. Arsenic(V) biosorption by charred orange peel in aqueous environments. Int. J. Phytoremediat. 2016, 18, 442–449. [Google Scholar] [CrossRef]
- Velazquez-Jimenez, L.H.; Pavlick, A.; Rangel-Mendez, J.R. Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind. Crop. Prod. 2013, 43, 200–206. [Google Scholar] [CrossRef]
- Huang, D.; Li, B.; Ou, J.; Xue, W.; Li, J.; Li, Z.; Li, T.; Chen, S.; Deng, R.; Guo, X. Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: Preparation, final disposal, mechanism and influencing factors. J. Environ. Manag. 2020, 261, 109879. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A. Development of Novel Biosorbents in Removing Heavy Metals from Aqueous Solution. Ph.D. Thesis, University of Technology, Sydney (UTS), Sydney, Australia, 2013. [Google Scholar]
- Parate, R.; Talib, I. Study of metal adsorbent prepared from tur dal (Cajanuscajan) husk: A value addition to agrowaste. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 43–54. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Mangwandi, C.; Walker, G.M.; Allen, S.J.; Ahmad, M.N. Biosorption characteristics of sawdust for the removal of Cd(II) Ions: Mechanism and thermodynamic studies. Chem. Eng. Trans. 2011, 24, 1297–1302. [Google Scholar]
- Richards, S.; Dawson, J.; Stutter, M. The potential use of natural vs commercial biosorbent material to remediate stream waters by removing heavy metal contaminants. J. Environ. Manag. 2018, 231, 275–281. [Google Scholar] [CrossRef]
- Ngah, W.S.W.; Fatinathan, S. Pb(II) biosorption using chitosan and chitosan derivatives beads: Equilibrium, ion exchange and mechanism studies. J. Environ. Sci. 2010, 22, 338–346. [Google Scholar] [CrossRef]
- Zakhama, S.; Dhaouadi, H.; M’Henni, F. Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae. Bioresour. Technol. 2011, 102, 786–796. [Google Scholar] [CrossRef]
- De Souza Coracao, A.C.; dos Santos, F.S.; Duarte, J.A.; Lopes-Filho, E.A.; De-Paula, J.C.; Rocha, L.M.; Krepsky, N.; Fiaux, S.B.; Teixeira, V.L. What do we know about the utilization of the Sargassum species as biosorbents of trace metals in Brazil? J. Environ. Chem. Eng. 2020, 8, 103941. [Google Scholar] [CrossRef]
- Habets, S.; Wild, P.J.; Huijgen, W.J.J.; Van Eck, E.R.H. The influence of thermochemical treatments on the lignocellulosic structure of wheat straw as studied by natural abundance 13C NMR. Bioresour. Technol. 2013, 146, 585–590. [Google Scholar] [CrossRef]
- Wang, Q. Deciphering and Optimizing the Process of Removal and Recovery of Pb(II) and Cd(II) from Wastewater by Biosorbent Derived from Fruit Waste. Ph.D. Thesis, Hong Kong Polytechnic University, Hong Kong, China, 2019. [Google Scholar]
- Farinella, N.V.; Matos, G.D.; Arruda, M.A.Z. Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresour. Technol. 2007, 98, 1940–1946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xia, W.; Teng, B.; Liu, X.; Zhang, W. Zirconium cross-linked chitosan composite: Preparation, characterization and application in adsorption of Cr(VI). Chem. Eng. J. 2013, 229, 1–8. [Google Scholar] [CrossRef]
- Kupich, I.; Madeła, M. Sorption as effective and economical method of waterborne pathogens removal. In Waterborne Pathogens; Butterworth-Heinemann: Oxford, UK, 2020; pp. 301–319. [Google Scholar]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Gaur, N.; Flora, G.; Yadav, M.; Tiwari, A. A review with recent advancements on bioremediation-based abolition of heavy metals. Environ. Sci. Process. Impacts 2014, 16, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.B.; Jaishankar, M.; Biju, V.G.; Beeregowda, K.N. Role of bioadsorbents in reducing toxic metals. J. Toxicol. 2016, 2016, 436960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sud, D.; Mahajan, G.; Kaur, M.P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review. Bioresour. Technol. 2008, 99, 6017–6027. [Google Scholar] [CrossRef] [PubMed]
- Abdolali, A. Detoxification of Heavy Metal Ions from Aqueous Solutions Using a Novel Lignocellulosic Multi-Metal Binding Biosorbent. Ph.D. Thesis, University of Technology, Sydney (UTS), Sydney, Australia, 2017. [Google Scholar]
- Hackbarth, F.V.; Girardi, F.; Santos, J.C.; Souza, A.A.U.; Boaventura, R.A.R.; Guelli, S.M.A.; Souza, U.; Vilar, V.J.P. Ion-exchange breakthrough curves for single and multi-metal systems using marine macroalgae Pelvetia canaliculata as a natural cation exchanger. Chem. Eng. J. 2015, 269, 359–370. [Google Scholar] [CrossRef]
- Liu, C.; Ngo, H.H.; Guo, W. Watermelon rind: Agro-waste or superior biosorbent? Appl. Biochem. Biotechnol. 2012, 167, 1699–1715. [Google Scholar] [CrossRef]
- Pozdniakova, T.A.; Mazur, L.P.; Boaventura, R.A.R.; Vilar, V.J.P. Brown macro-algae as natural cation exchangers for the treatment of zinc containing wastewaters generated in the galvanizing process. J. Clean. Prod. 2016, 119, 38–49. [Google Scholar] [CrossRef]
- Reddy, N.A.; Lakshmipathy, R.; Sarada, N.C. Application of Citrullus lanatus rind as biosorbent for removal of trivalent chromium from aqueous solution. Alex. Eng. J. 2014, 53, 969–975. [Google Scholar] [CrossRef] [Green Version]
- Kayranli, B. Cadmium removal mechanisms from aqueous solution by using recycled lignocelluloses. Alex. Eng. J. 2021, 61, 443–457. [Google Scholar] [CrossRef]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- Liu, C.; Ngo, H.H.; Guo, W.; Tung, K.L. Optimal conditions for preparation of banana peels, sugarcane bagasse and watermelon rind in removing copper from water. Bioresour. Technol. 2012, 119, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; Froberg, B.; Wolf, A.; Rusyniak, D.E. Heavy metal poisoning: Clinical presentations and pathophysiology. Clin. Lab. Med. 2006, 26, 67–97. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U.; Kozinski, J.A.; Khan, M.A.; Athar, M. Biosorption of heavy metal ions using wheat based biosorbents—A review of the recent literature. Bioresour. Technol. 2010, 101, 5043–5053. [Google Scholar] [CrossRef] [PubMed]
- Kamizela, T.; Worwag, M. Processing of Water Treatment Sludge by Bioleaching. Energies 2020, 13, 6539. [Google Scholar] [CrossRef]
- Kamizela, T.; Grobelak, A.; Worwag, M. Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the Recovery of Heavy Metals from Landfill Leachates. Energies 2021, 14, 3336. [Google Scholar] [CrossRef]
- Samant, R.A.; Gurav, V.L. A biosorption of heavy metal ions from effluent using waste fish scale. Asian J. Res. Chem. 2018, 11, 775–777. [Google Scholar] [CrossRef]
- Ansari, T.M.; Shaheen, S.; Manzoor, S.; Naz, S.; Hanif, M.A. Litchi chinensis peel biomass as green adsorbent for cadmium (Cd) ions removal from aqueous solutions. Desalin. Water Treat. 2020, 173, 343–350. [Google Scholar] [CrossRef]
- Porpino, K.K.P.; Carvalho Filho, J.R.; Conceição Silva Barreto, M.; Beltrão Cambuim, K.; Toscano, I.A.S.; Azevedo Lima, M. Fe(II) adsorption on Ucides cordatus crab shells. Quim. Nov. 2011, 34, 928–932. [Google Scholar] [CrossRef] [Green Version]
- Sweidan, H.; Hamouda, M.; El-Hassan, H.; Maraqa, M. A framework for the investigation of biowaste materials as potential adsorbents for water treatment. In Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering, Rome, Italy, 7–9 April 2019; pp. 7–9. [Google Scholar]
- Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, K.N.; Inoue, K.; Ohto, K.; Hayashida, T. Adsorptive separation of metallic pollutants onto waste seaweeds, Porphyra yezoensis and Ulva japonica. Sep. Sci. Technol. 2007, 42, 2003–2018. [Google Scholar] [CrossRef]
- Biswas, B.K.; Inoue, K.; Ghimire, K.N.; Harada, H.; Ohto, K.; Kawakita, H. Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium. Bioresour. Technol. 2008, 99, 8685–8690. [Google Scholar] [CrossRef]
- Benis, K.Z.; Damuchali, A.M.; McPhedran, K.N.; Soltan, J. Treatment of aqueous arsenic—A review of biosorbent preparation methods. J. Environ. Manag. 2020, 273, 111126. [Google Scholar] [CrossRef]
- Nieto, L.M.; Alami, S.B.D.; Hodaifa, G.; Faur, C.; Rodríguez, S.; Giménez, J.A.; Ochando, J. Adsorption of iron on crude olive stones. Ind. Crop. Prod. 2010, 32, 467–471. [Google Scholar] [CrossRef]
- Demirbas, A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 2008, 157, 220–229. [Google Scholar] [CrossRef]
- Nyazi, K.; Yaacoubi, A.; Baçaoui, A.; Bennouna, C.; Dahbi, A.; Rivera-Utrilla, J.; Moreno-Castilla, C. Preparation and characterization of new adsorbent materials from the olive wastes. J. Phys. IV 2004, 123, 121–124. [Google Scholar] [CrossRef]
- Elizalde-González, M.P.; Mattusch, J.; Wennrich, R. Chemically modified maize cobs waste with enhanced adsorption properties upon methyl orange and arsenic. Bioresour. Technol. 2008, 99, 5134–5139. [Google Scholar] [CrossRef]
- Banu, I.S.I.; Aprodu, I. Potential of maize cobs for removal Zn(II) and Ni(II) in aqueous systems. Rev. Chim. Buchar. 2008, 59, 1375–1377. [Google Scholar] [CrossRef]
- Chuah, T.G.; Jumasiah, A.; Azni, I.; Katayon, S.; Thomas Choong, S.Y. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview. Desalination 2005, 175, 305–316. [Google Scholar] [CrossRef]
- Daifullah, A.A.M.; Girgis, B.S.; Gad, H.M.H. Utilization of agro-residues (rice husk) in small waste water treatment plans. Mater. Lett. 2003, 57, 1723–1731. [Google Scholar] [CrossRef]
- Ding, Y.; Jing, D.; Gong, H.; Zhou, L.; Yang, X. Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresour. Technol. 2012, 114, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.P.; Chang, C.C. Adsorption of copper(II), cadmium(II), nickel(II) and lead(II) from aqueous solution using biosorbents. Adsorption 2012, 18, 395–401. [Google Scholar] [CrossRef]
- Basu, M.; Guha, A.K.; Ray, L. Biosorptive removal of lead by lentil husk. J. Environ. Chem. Eng. 2015, 3, 1088–1095. [Google Scholar] [CrossRef]
- Pehlivan, E.; Altun, T.; Parlayici, S. Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions. J. Hazard. Mater. 2009, 164, 982–986. [Google Scholar] [CrossRef]
- Nadeem, R.; Manzoor, Q.; Iqbal, M.; Nisar, J. Biosorption of Pb(II) onto immobilized native Mangifera indica waste biomass. J. Ind. Eng. Chem. 2016, 35, 185–194. [Google Scholar] [CrossRef]
- Milojković, J.; Stojanović, M.; Mihajlović, M.; Lopičić, Z.; Šoštarić, T.; Petrović, M.; Petrović, J. Pb(II) biosorption by selected waste biomass. Zast. Mater. 2016, 57, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Bozȩcka, A.; Sanak-Rydlewska, S. Sorption of Pb2+ ions from aqueous solutions on organic wastes (part I). Arch. Min. Sci. 2013, 58, 1241–1250. [Google Scholar]
- Bulut, Z.; Baysal, Y. Removal of Pb(II) from wastewater using wheat bran. J. Environ. Manag. 2006, 78, 107–113. [Google Scholar] [CrossRef]
- Iqbal, M.; Saeed, A.; Kalim, I. Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Sep. Sci. Technol. 2009, 44, 3770–3791. [Google Scholar] [CrossRef]
- Stanković, S.; Šoštarić, T.; Bugarčić, M.; Janićijević, A.; Pantović-Spajić, K.; Lopičić, Z. Adsorption of Cu(II) ions from synthetic solutions by sunflower seed husks. Acta Period. Technol. 2019, 352, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Aksu, Z.; Işoǧlu, I.A. Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process. Biochem. 2005, 40, 3031–3044. [Google Scholar] [CrossRef]
- Rao, R.A.K.; Ikram, S. Sorption studies of Cu(II) on gooseberry fruit (Emblica officinalis) and its removal from electroplating wastewater. Desalination 2011, 277, 390–398. [Google Scholar] [CrossRef]
- Siangko, C.N.; Escasinas, P.J.; Florida, H.A. Biosorption Optimization and Kinetic Modeling of Ni2+ and Zn2+ Removal from Aqueous Solution Using Calamansi (Citrofortunella microcarpa) and Dalandan (Citrus aurantium) Peels. Conference Paper, DLSU Research·Congress, August 2021. Available online: https://www.dlsu.edu.ph/wp-content/uploads/pdf/conferences/research-congress-proceedings/2021/SEE-10.pdf (accessed on 23 August 2021).
- Farhan, A.M.; Salem, N.M.; Al-Dujaili, A.H.; Awwad, A.M. Biosorption Studies of Cr(VI) Ions from Electroplating Wastewater by Walnut Shell Powder. Am. J. Environ. Eng. 2012, 2, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Anwar, J.; Shafique, U.; Muhammad Salman, W.; Hussain, Z.; Saleem, M.; Shahid, N.; Mahboob, S.; Ghafoor, S.; Akram, M.; Rehman, R.; et al. Removal of chromium from water using pea waste—A green approach. Green Chem. Lett. Rev. 2010, 3, 239–243. [Google Scholar] [CrossRef]
- Malkoc, E.; Nuhoglu, Y. Potential of tea factory waste for chromium(VI) removal from aqueous solutions: Thermodynamic and kinetic studies. Sep. Purif. Technol. 2007, 54, 291–298. [Google Scholar] [CrossRef]
- Khalil, U.; Shakoor, M.B.; Ali, S.; Ahmad, S.R.; Rizwan, M.; Alsahli, A.A.; Alyemeni, M.N. Selective Removal of Hexavalent Chromium from Wastewater by Rice Husk: Kinetic, Isotherm and Spectroscopic Investigation. Water 2021, 13, 263. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, J.; You, S.; Liu, C.; Du, L.; Chen, K.; Liu, Y.; Ma, L. Selective Adsorption of CR (VI) onto Amine-Modified Passion Fruit Peel Biosorbent. Processes 2021, 9, 790. [Google Scholar] [CrossRef]
- Nasernejad, B.; Zadeh, T.E.; Pour, B.B.; Bygi, M.E.; Zamani, A. Camparison for biosorption modeling of heavy metals (Cr (III), Cu (II), Zn (II)) adsorption from wastewater by carrot residues. Process. Biochem. 2005, 40, 1319–1322. [Google Scholar] [CrossRef]
- Khaskheli, M.I.; Memon, S.Q.; Siyal, A.N.; Khuhawar, M.Y. Use of orange peel waste for Arsenic remediation of drinking water. Waste Biomass Valoriz. 2011, 2, 423–433. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agricultural Commodities Production; Food and Agricultural Organization of United Nations, Economic and Social Department, The Statistical Division: New York, NY, USA, 2016; Available online: http://www.fao.org/faostat/en/#home (accessed on 20 January 2021).
- Hamed Mosavian, M.T.; Khazaei, I.; Aliabadi, M. Use of sawdust of aspen tree for the removal of chromium(VI) from aqueous solution. Iran. J. Earth Sci. 2012, 4, 25–30. [Google Scholar]
- Kim, N.; Park, M.; Park, D. A new efficient forest biowaste as biosorbent for removal of cationic heavy metals. Bioresour. Technol. 2015, 175, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Biegaska, M.; Cierpiszewski, R. Utilization of cellulose and wicker bark of Salix americana for copper adsorption from aqueous solutions. Proc. ECOpole 2010, 4, 313–317. [Google Scholar]
- Afroze, S.; Sen, T.K.; Ang, H.M. Adsorption removal of zinc(II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: Kinetics, mechanism and equilibrium study. Process Saf. Environ. Prot. 2016, 102, 336–352. [Google Scholar] [CrossRef]
- Pravalika, K.V.; Janaki Sriram, P.; Meghana, P.K.; Ravindhranath, K. A new effective adsorbent derived from the barks of Ziziphus mauritiana plant for the removal of chromate from polluted water. Rasayan J. Chem. 2018, 11, 1750–1756. [Google Scholar] [CrossRef]
- Vinodhini, V.; Das, N. Mechanism of Cr (VI) biosorption by neem sawdust. Am.-Eurasian J. Sci. Res. 2009, 4, 324–329. [Google Scholar]
- Ofomaja, A.E.; Naidoo, E.B. Biosorption of lead(II) onto pine cone powder: Studies on biosorption performance and process design to minimize biosorbent mass. Carbohydr. Polym. 2010, 82, 1031–1042. [Google Scholar] [CrossRef]
- Ofomaja, A.E.; Naidoo, E.B.; Modise, S.J. Removal of copper(II) from aqueous solution by pine and base modified pine cone powder as biosorbent. J. Hazard. Mater. 2009, 168, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Deniz, F. Color removal from aqueous solutions of metal-containing dye using pine cone. Desalin. Water Treat. 2013, 51, 22–24, 4573–4581. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kametani, T.; Maruyama, T. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Res. 2005, 39, 1803–1808. [Google Scholar] [CrossRef]
- Ibrahim, W.M. Biosorption of heavy metal ions from aqueous solution by red macroalgae. J. Hazard. Mater. 2011, 192, 1827–1835. [Google Scholar] [CrossRef]
- Sankararamakrishnan, N.; Sharma, A.K.; Sanghi, R. Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater. J. Hazard. Mater. 2007, 148, 353–359. [Google Scholar] [CrossRef]
- Bilal, M.; Shah, J.A.; Ashfaq, T.; Gardazi, S.M.H.; Tahir, A.A.; Pervez, A.; Haroon, H.; Mahmood, Q. Waste biomass adsorbents for copper removal from industrial wastewater-A review. J. Hazard. Mater. 2013, 263, 322–333. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Winnie, H.Y.N.; Balasubramanian, R. Biosorption characteristics of crab shell particles for the removal of manganese(II) and zinc(II) from aqueous solutions. Desalination 2011, 266, 195–200. [Google Scholar] [CrossRef]
- Prasanna Kumar, Y.; King, P.; Prasad, V.S.R.K. Adsorption of zinc from aqueous solution using marine green algae—Ulva fasciata sp. Chem. Eng. J. 2007, 129, 161–166. [Google Scholar] [CrossRef]
- Freitas, O.M.M.; Martins, R.J.E.; Delerue-Matos, C.M.; Boaventura, R.A.R. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: Kinetic modelling. J. Hazard. Mater. 2008, 153, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Blanes, P.; Cong, C.; Cortadi, A.; Frascaroli, M.; Gattuso, M.; García, S.; González, J.; Harada, M.; Matulewicz, C.; Niwa, Y.; et al. Biosorption of Trivalent Chromium from Aqueous Solution by Red Seaweed Polysiphonia nigrescens. J. Water Resour. Prot. 2011, 3, 832–843. [Google Scholar] [CrossRef] [Green Version]
- Murphy, V.; Hughes, H.; McLoughlin, P. Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 2008, 70, 1128–1134. [Google Scholar] [CrossRef]
- Kaveeshwar, A.R.; Sanders, M.; Ponnusamy, S.K.; Depan, D.; Subramaniam, R. Chitosan as a biosorbent for adsorption of iron(II) from fracking wastewater. Polym. Adv. Technol. 2018, 29, 961–969. [Google Scholar] [CrossRef]
- Deniz, F.; Tezel Ersanli, E. A renewable biosorbent material for green decontamination of heavy metal pollution from aquatic medium: A case study on manganese removal. Int. J. Phytoremediat. 2021, 23, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K.; Balasubramanian, R. Single and binary biosorption of cerium and europium onto crab shell particles. Chem. Eng. J. 2010, 163, 337–343. [Google Scholar] [CrossRef]
- Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Crini, G.; Badot, P.M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Bergmann, C.P.; Machado, F.M. Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications; Volume Carbon; Springer International Publishing Bergmann: New York, NA, USA, 2015; pp. 1–105. [Google Scholar]
- Chen, A.; Shang, C.; Shao, J.; Lin, Y.; Luo, S.; Zhang, J.; Huang, H.; Lei, M.; Zeng, Q. Carbon disulfide-modified magnetic ion-imprinted chitosan-Fe (III): A novel adsorbent for simultaneous removal of tetracycline and cadmium. Carbohydr. Polym. 2017, 155, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Aris, A.Z.; Ismail, F.A.; Ng, H.Y.; Praveena, S.M. An experimental and modelling study of selected heavy metals removal from aqueous solution using Scylla serrata as biosorbent. Pertanika J. Sci. Technol. 2014, 22, 553–566. [Google Scholar]
- Michalak, I.; Chojnacka, K.; Witek-Krowiak, A. State of the art for the biosorption process—A review. Appl. Biochem. Biotechnol. 2013, 170, 1389–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Chen, J.P. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef]
- Ruangrit, K.; Pekkoh, J.; Duangjan, K.; Phinyo, K.; Kamopas, W.; Jeerapan, I.; Pathom-aree, W.; Srinuanpan, S. Effectiveness of Using Oleaginous Microalgae as a Green Biosorbent to Remove Copper from Aqueous Media. EnvironmentAsia 2021, 14, 14–23. [Google Scholar]
- Romera, E.; González, F.; Ballester, A.; Blázquez, M.L.; Muñoz, J.A. Comparative study of biosorption of heavy metals using different types of algae. Bioresour. Technol. 2007, 98, 3344–3353. [Google Scholar] [CrossRef] [PubMed]
- Sheng, P.X.; Ting, Y.P.; Chen, J.P.; Hong, L. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 2004, 275, 131–141. [Google Scholar] [CrossRef]
- Romera, E.; González, F.; Ballester, A.; Blázquez, M.L.; Muñoz, J.A. Biosorption with algae: A statistical review. Crit. Rev. Biotechnol. 2006, 26, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.A.; Volesky, B.; Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Lodeiro, P.; Cordero, B.; Barriada, J.L.; Herrero, R.; Sastre De Vicente, M.E. Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour. Technol. 2005, 96, 1796–1803. [Google Scholar] [CrossRef] [Green Version]
- Kleinübing, S.J.; Silva, E.A.; Silva, M.G.C.; Guibal, E. Equilibrium of Cu(II) and Ni(II) biosorption by marine alga Sargassum filipendula in a dynamic system: Competitiveness and selectivity. Bioresour. Technol. 2011, 102, 4610–4617. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Zhang, Y.; Qin, J.; Wang, X.; Zhu, X. Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophora albida. Miner. Eng. 2009, 22, 372–377. [Google Scholar] [CrossRef]
- Bădescu, I.S.; Bulgariu, D.; Ahmad, I.; Bulgariu, L. Valorisation possibilities of exhausted biosorbents loaded with metal ions–a review. J. Environ. Manag. 2018, 15, 288–297. [Google Scholar] [CrossRef]
- Abdolali, A.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Du, B.; Wei, Q.; Wang, X.C.; Nguyen, P.D. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies. Bioresour. Technol. 2015, 193, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.D.; He, Z.L.; Yang, X.E. Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere 2007, 69, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Filote, C.; Volf, I.; Santos, S.C.R.; Botelho, C.M.S. Bioadsorptive removal of Pb(II) from aqueous solution by the biorefinery waste of Fucus spiralis. Sci. Total Environ. 2019, 648, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Stirk, W.A.; Van Staden, J. Desorption of cadmium and the reuse of brown seaweed derived products as biosorbents. Bot. Mar. 2002, 45, 9–16. [Google Scholar] [CrossRef]
- Pertile, E.; Vaclavik, V.; Dvorsky, T.; Heviankova, S. The Removal of Residual Concentration of Hazardous Metals in Wastewater from a Neutralization Station Using Biosorbent—A Case Study Company Gutra, Czech Republic. Int. J. Environ. Res. Public Health 2020, 17, 7225. [Google Scholar] [CrossRef] [PubMed]
- Koduru, J.R.; Chang, Y.Y.; Yang, J.K.; Kim, I.S. Iron oxide impregnated Morus alba, L. fruit peel for biosorption of co(II): Biosorption properties and mechanism. Sci. World J. Vol. 2013, 2013, 917146. [Google Scholar]
- Ajmal, M.; Rao, R.A.; Ahmad, R.; Ahmad, J. Adsorption studies on Citrus reticulata (fruit peel of orange): Removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater. 2000, 79, 117–131. [Google Scholar] [CrossRef]
- Vinodhini, V.; Das, N.; Vinodhini, V.; Das, N. Relevant approach to assess the performance of sawdust as adsorbent of chromium (VI) ions from aqueous solutions. Int. J. Environ. Sci. Technol. 2010, 7, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Joseph, L.; Jun, B.M.; Flora, J.R.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef] [PubMed]
Metals | Biowaste | Sorption Capacity (mg/g) | References |
---|---|---|---|
Cd(II) | Agave bagasse | 13.27 | [8] |
Rice straw | 13.90 | [53] | |
Citrus maxima peel | 135.2 | [54] | |
Passion fruit shell | 86.75 | [54] | |
Sugarcane bagasse | 23.23 | [54] | |
Cabbage waste | 22.12 | [10] | |
Agave bagasse (HCl) | 12.50 | [8] | |
Agave bagasse (HNO3) | 13.50 | [8] | |
Agave bagasse (NaOH) | 18.32 | [8] | |
Pb(II) | Agave bagasse | 35.60 | [8] |
Lentil husk | 81.43 | [55] | |
Barley straws | 23.20 | [56] | |
Citrus maxima peel | 154.50 | [54] | |
Passion fruit shell | 109.92 | [54] | |
Sugarcane bagasse | 28.27 | [4] | |
Mango seed Mangifera indica | 183.00 | [57] | |
Maize silk | 70.80 | [58] | |
Peach kernels | 25.14 | [58] | |
Sunflower husks | 36.90 | [59] | |
Cabbage waste | 61.27 | [10] | |
Wheat bran | 87.00 | [60] | |
Agave bagasse (HCl) | 42.31 | [8] | |
Agave bagasse (HNO3) | 54.29 | [8] | |
Agave bagasse (NaOH) | 50.12 | [8] | |
Cu(II) | Citrus maxima peel | 83.7 | [54] |
Passion fruit shell | 30.09 | [54] | |
Sugarcane bagasse | 16.09 | [54] | |
Mango peel | 46.09 | [61] | |
Sunflower husks | 34.89 | [62] | |
Beet pulp | 31.4 | [63] | |
Gooseberry waste | 24.0 | [64] | |
Zn(II) | Agave bagasse | 7.84 | [8] |
Mango peel | 28.21 | [61] | |
Cabbage waste | 12.24 | [10] | |
Agave bagasse (HCl) | 12.40 | [8] | |
Agave bagasse (HNO3) | 14.43 | [8] | |
Agave bagasse (NaOH) | 20.54 | [8] | |
Ni(II) | Citrus maxima peel | 70.79 | [54] |
Passion fruit shell | 20.64 | [54] | |
Sugarcane bagasse | 12.04 | [54] | |
Mango peels | 39.75 | [61] | |
Calamansi peels | 11.00 | [65] | |
Cr(VI) | Walnut shells | 138.89 | [66] |
Bean waste | 21.20 | [67] | |
Bean shells | 96.05 | [11] | |
Waste from tea manufacture | 54.65 | [68] | |
Rice husk | 379.63 | [69] | |
Passion fruit peel amino-riched | 675.65 | [70] | |
Cr(III) | Carrot residues | 45.09 | [71] |
Watermelon rinds | 172.6 | [30] | |
Fe(III) | Bean shells | 66.63 | [11] |
As(V) | Orange peels | 36.81 | [72] |
Metals | Biowaste | Sorption Capacity (mg/g) | References |
---|---|---|---|
Cd(II) | Sawdust | 41.21 | [12] |
Chestnut shells | 34.77 | [75] | |
Pine cones | 4.29 | [75] | |
Pb(II) | Pine cones | 15.17 | [75] |
Chestnut shells | 74.35 | [75] | |
Pine needles | 25.86 | [75] | |
Cu(II) | Willow bark | 0.173 | [76] |
Wood chips | 2.90 | [13] | |
Zn(II) | Eucalyptus bark | 128.21 | [77] |
Eucalyptus bark (NaOH) | 250.0 | [77] | |
Wood chips | 3.0 | [13] | |
Cr(VI) | Bark of Ziziphus mauritiana | 18.8 | [78] |
Neem sawdust | 58.82 | [79] |
Metals | Biowaste | Sorption Capacity (mg/g) | References |
---|---|---|---|
Cd(II) | Green algae Ulva onoi | 61.90 | [84] |
Green algae Ulva lactuca | 127.00 | [15] | |
Red algae G. oblongata | 85.50 | [85] | |
Chitosan | 85.47 | [86] | |
Chitosan (NaOH) | 357.14 | [86] | |
Pb(II) | Chitosan | 34.98 | [14] |
Myriophyllum spicatum | 48.50 | [58] | |
Green algae Ulva lactuca | 230.00 | [15] | |
Red algae P. capillacea | 34.10 | [85] | |
Red algae C. mediterranea | 64.30 | [85] | |
Cu(II) | Green algae Ulva lactuca | 112.00 | [15] |
Green algae Ulothrix zonata | 176.20 | [87] | |
Brown algae Turbinaria ornate | 147.06 | [87] | |
Macroalgae Fucus vesiculosus | 72.37 | [13] | |
Zn(II) | Crab shells Portunus sanguinolentus | 123.70 | [88] |
Green algae Ulva fasciata sp. | 13.5 | [89] | |
Brown algae Bifurcaria bifurcate | 30.30 | [9] | |
Brown algae Fucus spiralis | 34.30 | [90] | |
Macroalgae Fucus vesiculosus | 52.40 | [13] | |
Ni(II) | Green algae Ulva lactuca | 67.00 | [15] |
Cr(III) | Red algae Polysiphonia nigrescens | 16.11 | [91] |
Palmaria palmata | 29.63 | [92] | |
Red algae C. mediterranea | 70.30 | [85] | |
Red algae G. oblongata | 105.20 | [85] | |
Fe(II) | Chitosan | 51.81 | [93] |
Mn(II) | Crab shells Portunus sanguinolentus | 69.90 | [88] |
Seagrass Zostera marina | 58.43 | [94] | |
Ce(III) | Crab shells | 144.90 | [95] |
Co(II) | Red algae P. capillacea | 52.60 | [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madeła, M.; Skuza, M. Towards a Circular Economy: Analysis of the Use of Biowaste as Biosorbent for the Removal of Heavy Metals. Energies 2021, 14, 5427. https://doi.org/10.3390/en14175427
Madeła M, Skuza M. Towards a Circular Economy: Analysis of the Use of Biowaste as Biosorbent for the Removal of Heavy Metals. Energies. 2021; 14(17):5427. https://doi.org/10.3390/en14175427
Chicago/Turabian StyleMadeła, Magdalena, and Monika Skuza. 2021. "Towards a Circular Economy: Analysis of the Use of Biowaste as Biosorbent for the Removal of Heavy Metals" Energies 14, no. 17: 5427. https://doi.org/10.3390/en14175427
APA StyleMadeła, M., & Skuza, M. (2021). Towards a Circular Economy: Analysis of the Use of Biowaste as Biosorbent for the Removal of Heavy Metals. Energies, 14(17), 5427. https://doi.org/10.3390/en14175427