Life Cycle Environmental Assessment of Energy Valorization of the Residual Agro-Food Industry
Abstract
:1. Introduction
- Most of the studies reviewed focus on a CHP plant size of 500 kW and few below 100 kW;
2. Materials and Methods: Life Cycle Assessment
- The LCA methodology operates with four separate phases [16,17]: Goal and scope definition. The goal sets the decision context and the intended application of the study. During the scope definition, the object of the LCA study is identified and described in detail and all methodological aspects of the LCA study are set (such as functional unit, system boundaries, data quality, etc.);
- Life cycle inventory (LCI). During this phase, information about the physical flows in terms of input of resources, materials, products, and the output of emissions, waste, and valuable products for the product system are collected. The result of the PCI phase is the inventory table that lists the inputs and the outputs of elementary flows of the product system;
- Life cycle impact assessment (LCIA). In this phase, the elementary flows that have been assessed in the inventory analysis are translated into impacts on the environment;
- Life cycle interpretation. In this phase, the findings of either the LCI or LCIA are evaluated in relation to the defined goal and scope in order to reach conclusions and recommendations.
2.1. Goal and Scope Definition
- To estimate the potential environmental impacts and benefits related to the energy valorization of residual biomass derived from the agro-food industry through an anaerobic digester (AD)–combined heat and power plant (CHP) system (AD–CHP);
- To assess the contribution of each life cycle phase to the overall impacts.
2.2. Life Cycle Inventory (LCI) Analysis
2.2.1. Feedstock Supply
2.2.2. Anaerobic Digestion
2.2.3. CHP
3. Results and Discussion
3.1. Life Cycle Impact Assessment and Interpretation
3.2. Sensitivity and Uncertainty Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- JCR-EC JCR for the European Commission’s Knowledge Centre for Bioeconomy. Brief on biomass for energy in the European Union; Publications Office of the European Union: Luxembourg, 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.; Taylor, N.; Banja, M. Brief on Biomass for Energy in the European Union. Sanchez Lopez, J., Avraamides, M., Eds.; Publications Office of the European Union: Luxembourg, 2019. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC109354 (accessed on 2 September 2021).
- Lijó, L.; González-García, S.; Bacenetti, J.; Moreira, M.T. The environmental effect of substituting energy crops for food waste as feedstock for biogas production. Energy 2017, 137, 1130–1143. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, F.; Liu, S.; Wang, L.; Qiu, L.; Alexandrov, G.; Jothiprakash, V. Bioenergy production and environmental impacts. Geosci. Lett. 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bui, Q.; Zhang, B.; Pham, T.L.H. Biomass energy production and its impacts on the ecological footprint: An investigation of the G7 countries. Sci. Total Environ. 2020, 743, 140741. [Google Scholar] [CrossRef] [PubMed]
- FAO The Water-Energy-Food Nexus. A New Approach in Support of Food Security and Sustainable Agriculture. 2014. Available online: http://www.fao.org/policy-support/tools-and-publications/resources-details/zh/c/421718/ (accessed on 2 September 2021).
- Bhatia, S.C. Advanced Renewable Energy Systems: Two Volume Set, 1st ed.; Woodhead Publishing India: New Delhi, India, 2014; ISBN 9781782422693. [Google Scholar]
- Assunção, L.R.C.; Mendes, P.A.S.; Matos, S.; Borschiver, S. Technology roadmap of renewable natural gas: Identifying trends for research and development to improve biogas upgrading technology management. Appl. Energy 2021, 292, 116849. [Google Scholar] [CrossRef]
- Ghorbani, B.; Ebrahimi, A.; Ziabasharhagh, M. Thermodynamic and economic evaluation of biomethane and carbon dioxide liquefaction process in a hybridized system of biogas upgrading process and mixed fluid cascade liquefaction cycle. Process Saf. Environ. Prot. 2021, 151, 222–243. [Google Scholar] [CrossRef]
- Aryal, N.; Kvist, T. Alternative of biogas injection into the Danish gas grid system—A study from demand perspective. ChemEngineering 2018, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency Outlook for Biogas and Biomethane. Prospects for Organic Growth, IEA, Paris. 2020. Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth (accessed on 2 September 2021).
- Bacenetti, J.; Sala, C.; Fusi, A.; Fiala, M. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energy 2016, 179, 669–686. [Google Scholar] [CrossRef] [Green Version]
- Sala, S.; Reale, F.; Cristóbal-García, J.; Marelli, L.; Rana, P. Life Cycle Assessment for the Impact Assessment of Policies, EUR 28380 EN; Publications Office of the European Union: Luxembourg, 2016; Volume 28380, Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC105145 (accessed on 2 September 2021).
- Zimek, M.; Schober, A.; Mair, C.; Baumgartner, R.J.; Stern, T.; Füllsack, M. The third wave of LCA as the “decade of consolidation”. Sustainability 2019, 11, 3283. [Google Scholar] [CrossRef] [Green Version]
- Fauzi, R.T.; Lavoie, P.; Sorelli, L.; Heidari, M.D.; Amor, B. Exploring the current challenges and opportunities of Life Cycle Sustainability Assessment. Sustainability 2019, 11, 636. [Google Scholar] [CrossRef] [Green Version]
- ISO EN ISO 14040:2006/A1:2020. Environmental Management—Life Cycle Assessment—Principles and Framework—Amendment 1 (ISO 14040:2006/Amd 1:2020). 2020. Available online: https://www.iso.org/standard/76121.html) (accessed on 2 September 2021).
- ISO EN ISO 14044:2006/A2:2020. Environmental Management—Life Cycle Assessment—Requirements and Guidelines - Amendment 2 (ISO 14044:2006/Amd 2:2020). 2020. Available online: https://www.iso.org/standard/76122.html) (accessed on 2 September 2021).
- Fantin, V.; Giuliano, A.; Manfredi, M.; Ottaviano, G.; Stefanova, M.; Masoni, P. Environmental assessment of electricity generation from an Italian anaerobic digestion plant. Biomass Bioenergy 2015, 83, 422–435. [Google Scholar] [CrossRef]
- Wang, Q.L.; Li, W.; Gao, X.; Li, S.J. Life cycle assessment on biogas production from straw and its sensitivity analysis. Bioresour. Technol. 2016, 201, 208–214. [Google Scholar] [CrossRef]
- Ingrao, C.; Rana, R.; Tricase, C.; Lombardi, M. Application of Carbon Footprint to an agro-biogas supply chain in Southern Italy. Appl. Energy 2015, 149, 75–88. [Google Scholar] [CrossRef]
- Bacenetti, J.; Negri, M.; Fiala, M.; González-García, S. Anaerobic digestion of different feedstocks: Impact on energetic and environmental balances of biogas process. Sci. Total Environ. 2013, 463–464, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Rana, R.; Ingrao, C.; Lombardi, M.; Tricase, C. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive. Sci. Total Environ. 2016, 550, 1182–1195. [Google Scholar] [CrossRef] [Green Version]
- Cusenza, M.A.; Longo, S.; Guarino, F.; Cellura, M. Energy and environmental assessment of residual bio-wastes management strategies. J. Clean. Prod. 2021, 285, 124815. [Google Scholar] [CrossRef]
- Boulamanti, A.K.; Donida Maglio, S.; Giuntoli, J.; Agostini, A. Influence of different practices on biogas sustainability. Biomass Bioenergy 2013, 53, 149–161. [Google Scholar] [CrossRef]
- Rehl, T.; Lansche, J.; Müller, J. Life cycle assessment of energy generation from biogas - Attributional vs. consequential approach. Renew. Sustain. Energy Rev. 2012, 16, 3766–3775. [Google Scholar] [CrossRef]
- Poeschl, M.; Ward, S.; Owende, P. Environmental impacts of biogas deployment - Part II: Life Cycle Assessment of multiple production and utilization pathways. J. Clean. Prod. 2012, 24, 184–201. [Google Scholar] [CrossRef]
- Tufvesson, L.M.; Lantz, M.; Börjesson, P. Environmental performance of biogas produced from industrial residues including competition with animal feed—Life-cycle calculations according to different methodologies and standards. J. Clean. Prod. 2013, 53, 214–223. [Google Scholar] [CrossRef]
- Dressler, D.; Loewen, A.; Nelles, M. Life cycle assessment of the supply and use of bioenergy: Impact of regional factors on biogas production. Int. J. Life Cycle Assess. 2012, 17, 1104–1115. [Google Scholar] [CrossRef]
- Styles, D.; Gibbons, J.; Williams, A.P.; Stichnothe, H.; Chadwick, D.R.; Healey, J.R. Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on dairy farms. GCB Bioenergy 2015, 7, 1034–1049. [Google Scholar] [CrossRef] [Green Version]
- Börjesson, P.; Berglund, M. Environmental systems analysis of biogas systems-Part II: The environmental impact of replacing various reference systems. Biomass Bioenergy 2007, 31, 326–344. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Wainaina, S.; Rajendran, K.; Awasthi, S.K.; Liu, T.; Duan, Y.; Jain, A.; Sindhu, R.; Binod, P.; et al. Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste. Renew. Sustain. Energy Rev. 2021, 144, 110837. [Google Scholar] [CrossRef]
- European Commission—Joint Research Centre—Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook—General guide for Life Cycle Assessment—Detailed guidance. First edition 10. EUR 24708 EN; Publications Office of the European Union: Luxembourg, 20 March 2010; ISBN 978-92-79-19092-6. [Google Scholar]
- NNFCC Biocentre The Official Information Portal on Anaerobic Digestion. Digestate. Available online: http://www.biogas-info.co.uk/about/digestate/ (accessed on 27 July 2021).
- Fusi, A.; Bacenetti, J.; Fiala, M.; Azapagic, A. Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion. Front. Bioeng. Biotechnol. 2016, 4, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- European Commission—Joint Research Centre Institute for Environment and Sustainability. Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment Methods. EUR 25167. 2012. Available online: https://eplca.jrc.ec.europa.eu (accessed on 2 September 2021).
- Fazio, S.; Castellani, V.; Sala, S.; Schau, E.; Secchi, M.; Zampori, L. Supporting information to the characterisation factors of recommended EF Life Cycle Impact Assessment methods, EUR 28888 EN, European Commission, Ispra. 2018. Available online: https://eplca.jrc.ec.europa.eu (accessed on 2 September 2021).
- Guo, M.; Murphy, R.J. LCA data quality: Sensitivity and uncertainty analysis. Sci. Total Environ. 2012, 435–436, 230–243. [Google Scholar] [CrossRef]
- Heijungs, R. On the number of Monte Carlo runs in comparative probabilistic LCA. Int. J. Life Cycle Assess. 2020, 25, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Longo, S.; Antonucci, V.; Cellura, M.; Ferraro, M. Life cycle assessment of storage systems: The case study of a sodium/nickel chloride battery. J. Clean. Prod. 2014, 85, 337–346. [Google Scholar] [CrossRef]
- Fusi, A.; Guidetti, R.; Azapagic, A. Evaluation of environmental impacts in the catering sector: The case of pasta. J. Clean. Prod. 2016, 132, 146–160. [Google Scholar] [CrossRef]
- Bacenetti, J.; Fusi, A. The environmental burdens of maize silage production: Influence of different ensiling techniques. Anim. Feed Sci. Technol. 2015, 204, 88–98. [Google Scholar] [CrossRef]
- Okoro, O.V.; Sun, Z. Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies. ChemEngineering 2019, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency EMEP/EEA. Air Pollutant Emission Inventory Guidebook 2016. Biological Treatment of Waste—Anaerobic Digestion at Biogas Facilities—Biogas Production. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016 (accessed on 2 September 2016).
- Cusenza, M.A.; Longo, S.; Cellura, M.; Guarino, F.; Messineo, A.; Mistretta, M.; Volpe, M. Environmental assessment of a waste-to-energy practice: The pyrolysis of agro-industrial biomass residues. Sustain. Prod. Consum. 2021, 28, 866–876. [Google Scholar] [CrossRef]
- Briones-Hidrovo, A.; Copa, J.; Tarelho, L.A.C.; Gonçalves, C.; Pacheco da Costa, T.; Dias, A.C. Environmental and energy performance of residual forest biomass for electricity generation: Gasification vs. combustion. J. Clean. Prod. 2021, 289, 125680. [Google Scholar] [CrossRef]
- Whiting, A.; Azapagic, A. Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy 2014, 170, 181–193. [Google Scholar] [CrossRef]
- Berndes, G.; Abt, B.; Asikainen, A.; Cowie, A.; Dale, V.; Egnell, G.; Lindner, M.; Marelli, L.; Paré, D.; Pingoud, K.; et al. Forest Biomass, Carbon Neutrality and Climate Change Mitigation. European Forest Institute. 2016. Available online: https://efi.int/publications-bank/forest-biomass-carbon-neutrality-and-climate-change-mitigation (accessed on 2 September 2021).
- Cusenza, M.A.; Guarino, F.; Longo, S.; Mistretta, M.; Cellura, M. Environmental assessment of 2030 electricity generation scenarios in Sicily: An integrated approach. Renew. Energy 2020, 160, 1148–1159. [Google Scholar] [CrossRef]
- European Commission Commission Staff Working Document—Impact Assessment—Sustainability of Bioenergy. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CONSIL:ST_15120_2016_ADD_9&from=EN (accessed on 2 September 2021).
- Boulay, A.M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef] [Green Version]
- Caputo, P.; Zagarella, F.; Cusenza, M.A.; Mistretta, M.; Cellura, M. Energy-environmental assessment of the UIA-OpenAgri case study as urban regeneration project through agriculture. Sci. Total Environ. 2020, 729, 138819. [Google Scholar] [CrossRef] [PubMed]
AD Parameter | Value |
---|---|
Net volume (m3) | 1300 * |
CHP parameter | Value |
Electric power (kW) | 100 ** |
Electrical efficiency (%) | 37.3 ** |
Thermal power (kW) | 138 ** |
Thermal efficiency (%) | 51.5 ** |
Impact Category | Acronym |
---|---|
Global Warming Potential (kgCO2eq) | GWP |
Ozone Depletion potential (kgCFC-11eq) | ODP |
Human toxicity–cancer effect (CTUh) | HT-nce |
Human toxicity–cancer effect (CTUh) | HT-ce |
Particulate Matter (kg PM2.5eq) | PM |
Ionizing Radiation–human health (kBqU235eq) | IR-hh |
Ionizing Radiation–ecosystem (CTUe) | IR-e |
Photochemical Ozone Formation Potential (kgNMVOCeq) | POFP |
Acidification Potential (molH+eq) | AP |
Terrestrial Eutrophication (molNeq) | EUT |
Freshwater Eutrophication (kgPeq) | EUF |
Marina Eutrophication (kgNeq) | EUM |
Freshwater Ecotoxicity (CTUe) | EFW |
Land use (kg Cdeficit) | LU |
Water resource depletion (m3water) | WRD |
Mineral Fossil and Renewable Resource Depletion (kgSbeq) | MFRRD |
Feedstock | Amount (ton/Day) | Transport Distance (km) |
---|---|---|
Olive pomace | 0.7 | 25 |
Whey | 8.4 | 60 |
Chicken manure | 1.9 | 100 |
Citrus processing waste | 4.0 | 200 |
Bovine manure | 0.9 | Local |
Sulla (Hedysarum coronarium) silage | 1 | Local |
Life Cycle Phase | Amount | Type of Data | Ecoinvent 3.6 Dataset Selected for LCI Modelling |
---|---|---|---|
Feedstock supply | |||
Feedstock (t/d) | 1.7 × 101 | Own calculations based on plant owner’s data | Burden free |
Sulla ensiled | 1.0 × 100 | Literature data [42] | (See Table 3) |
Transport (tkm/d) | 1.5 × 103 | Own calculations based on plant owner’s data | Transport, freight, lorry 16–32 metric ton (EURO 6) |
Operational phase | |||
Electricity–mixing tank (kWh/d) | 2.2 × 102 | Own calculations based on plant owner’s data | 92% Electricity low voltage (IT), 8% self-consumption from CHP |
Electricity–AD (kWh/d) | 5.2 × 102 | Own calculations based on plant owner’s data | 92% Electricity low voltage (IT), 8% self-consumption from CHP |
Electricity–Biogas treatment (kWh/d) | 1.2 × 102 | Own calculations based on plant owner’s data | 92% Electricity low voltage (IT), 8% self-consumption from CHP |
Electricity–CHP (kWh/d) | 3.6 × 101 | Own calculations based on plant owner’s data | 100% Electricity low voltage (IT) |
Thermal energy–CHP (kWh/d) | 8.8 × 102 a | Own calculations based on plant owner’s data | Self-consumption (AD process) |
Lubricant oil–CHP (kg/d) | 2.3 × 100 | Own calculations based on plant owner’s data | Lubricating oil production |
Direct emissions | |||
Carbon dioxide biogenic–AD (kg/d) | 1.2 × 101 | Own calculations based on plant owner’s data and literature data | Elementary flows |
Carbon dioxide biogenic–Biogas treat. (kg/d) | 6.0 × 100 | Own calculations based on energy system owner’s and literature data | Elementary flows |
Carbon dioxidebiogenic–CHP (kg/d) | 1.57 × 103 | Literature data [35] | Elementary flows |
Carbon monoxidebiogenic–CHP (kg/d) | 9.1 × 10−1 | Literature data [35] | Elementary flows |
Nitrous oxide–CHP (kg/d) | 4.7 × 10−1 | Literature data [35] | Elementary flows |
Methane, biogenic–AD (kg/d) | 4.5 × 100 | Own calculations based on plant owner’s data | Elementary flows |
Methane, biogenic–Biogas treat. (kg/d) | 2.2 × 100 | Own calculations based on plant owner’s data | Elementary flows |
Methane, biogenic–CHP (kg/d) | 4.3 × 10−1 | Literature data [35] | Elementary flows |
NMVOC–CHP (kg/d) | 3.8 × 10−2 | Literature data [35] | Elementary flows |
Platinum–CHP (kg/d) | 1.3 × 10−7 | Literature data [35] | Elementary flows |
Sulfur dioxide–CHP (kg/d) | 4.7 × 10−1 | Literature data [35] | Elementary flows |
Capital good | |||
Cement–mixing tank (tons) | 2.8 | Own calculations based on plant owner’s data | Concrete block, production |
Cement–AD (tons) | 4.8 × 102 | Own calculations based on plant owner’s data | Concrete block, production |
Polystyrene–AD (tons) | 1.1 × 100 | Own calculations based on plant owner’s data | Polystyrene foam slab for perimeter insulation, production |
Steel–AD (tons) | 2.4 × 101 | Own calculations based on plant owner’s data | Reinforced steel, production |
Output | |||
Electrical energy (kWh/d) | 2.2 × 103 b | Own calculations based on plant owner’s data | - |
Thermal energy (kWh/d) | 2.5 × 103 c | Own calculations based on plant owner’s data | - |
Digestate (tons/d) | 1.5 × 101 | Own calculations based on plant owner’s data | - |
Impact Category | Total |
---|---|
GWP (kgCO2eq) | 1.06 × 100 |
ODP (kgCFC-11eq) | 3.85 × 10−8 |
HT–nce (CTUh) | 5.71 × 10−8 |
HT–ce (CTUh) | 1.12 × 10−8 |
PM (kg PM2.5eq) | 1.13 × 10−4 |
IR–hh (kBqU235eq) | 2.59 × 10−2 |
IR–e (CTUe) | 9.79 × 10−8 |
POFP (kgNMVOCeq) | 8.21 × 10−4 |
AP (molH+eq) | 1.54 × 10−3 |
EUT (molNeq) | 3.05 × 10−3 |
EUF (kgPeq) | 4.98 × 10−5 |
EUM (kgNeq) | 2.29 × 10−4 |
EFw (CTUe) | 5.44 × 100 |
LU (kgCdeficit) | 7.81 × 10−1 |
WRD (m3water) | 1.41 × 10−3 |
MFRRD (kgSbeq) | 5.46 × 10−6 |
Impact Category | Unit | Total |
---|---|---|
GWP | µPt | 1.00 × 10+1 |
ODP | µPt | 2.10 × 10−1 |
HT–nce | µPt | 2.45 × 10+1 |
HT–ce | µPt | 6.00 × 10+1 |
PM | µPt | 1.48 × 100 |
IR–hh | µPt | 7.15 × 100 |
POFP | µPt | 1.21 × 100 |
AP | µPt | 1.83 × 100 |
EUT | µPt | 1.24 × 100 |
EUF | µPt | 5.08 × 10−1 |
EUM | µPt | 5.01 × 10−1 |
EFW | µPt | 9.69 × 10+1 |
LU | µPt | 1.00 × 10−2 |
WRD | µPt | 1.36 × 100 |
MFRRD | µPt | 1.89 × 100 |
Impact Category EF/ILCD | EF | Percentage Variation (EF-ILCD)/ILCD |
---|---|---|
CC (kgCO2eq) | 3.72 × 10−1 | −65.0% |
ODP (kgCFC-11eq) | 4.51 × 10−8 | 17.2% |
IR/IR–hh (kBqU235eq) | 2.59 × 10−2 | 0.% |
POFP (kgNMVOCeq) | 8.37 × 10−4 | 2.0% |
HT–nce (CTUh) | 3.55 × 10−9 | −93.8% |
HT–ce (CTUh) | 1.06 × 10−10 | −99.0% |
AP (molH+eq) | 1.54 × 10−3 | 0.% |
EUF (kgPeq) | 4.96 × 10−5 | −0.5% |
EUM (kgNeq) | 2.29 × 10−4 | 0.% |
EUT (molNeq) | 3.05 × 10−3 | −0.1% |
EFW (CTUe) | 4.12 × 100 | −24.2% |
WRD (m3 water) | 8.57 × 10−2 | 5995.1% |
MFRRD/RUm&m (kgSbeq) | 4.59 × 10−6 | −15.9% |
Impact Category EF/ILCD | Environmental Credits for Avoided Mineral Fertilizer | Environmental Credits for Avoided Thermal Energy Production | LCIA–ExS * | Percentage Variation (RS **-ExS)/ExS |
---|---|---|---|---|
CC (kgCO2eq) | −8.41 × 10−2 | −3.96 × 10−1 | 5.85 × 10−1 | −45% |
ODP (kgCFC-11eq) | −3.59 × 10−9 | −3.49 × 10−8 | −3.38 × 10−11 | −100% |
IR/IR–hh (kBqU235eq) | −2.47 × 10−8 | −1.39 × 10−8 | 1.85 × 10−8 | −68% |
POFP (kgNMVOCeq) | −2.36 × 10−9 | −3.93 × 10−9 | 4.87 × 10−9 | −56% |
HT-nce (CTUh) | −2.94 × 10−5 | −2.69 × 10−5 | 5.64 × 10−5 | −50% |
HT-ce (CTUh) | −2.12 × 10−3 | −4.94 × 10−3 | 1.88 × 10−2 | −27% |
AP (molH+eq) | −8.43 × 10−9 | −1.55 × 10−8 | 7.40 × 10−8 | −24% |
EUF (kgPeq) | −1.84 × 10−4 | −3.96 × 10−4 | 2.40 × 10−4 | −71% |
EUM (kgNeq) | −4.65 × 10−4 | −4.54 × 10−4 | 6.23 × 10−4 | −60% |
EUT (molNeq) | −1.41 × 10−3 | −8.85 × 10−4 | 7.54 × 10−4 | −75% |
EFW (CTUe) | −1.19 × 10−5 | −1.27 × 10−5 | 2.53 × 10−5 | −49% |
WRD (m3water) | −6.78 × 10−5 | −8.34 × 10−5 | 7.73 × 10−5 | −66% |
MFRRD/RUm&m (kgSbeq) | −1.92 × 100 | −1.05 × 100 | 2.47 × 100 | −55% |
Categoria D’impatto | Mean Value | Standard Deviation | Coefficient of Variation (%) | 2.5th Percentile | 97.5th Percentile |
---|---|---|---|---|---|
GWP (kgCO2eq) | 1.07 × 100 | 2.09 × 10−2 | 2.0 | 1.03 × 100 | 1.11 × 100 |
ODP (kgCFC-11eq) | 3.83 × 10−8 | 9.83 × 10−9 | 25.7 | 2.37 × 10−8 | 6.40 × 10−8 |
HT–nce (CTUh) | 5.63 × 10−8 | 4.47 × 10−8 | 79.4 | −2.78 × 10−8 | 1.49 × 10−7 |
HT–ce (CTUh) | 1.05 × 10−8 | 5.04 × 10−9 | 47.9 | 5.48 × 10−9 | 2.39 × 10−8 |
PM (kg PM2.5eq) | 1.14 × 10−4 | 1.14 × 10−5 | 10.0 | 9.62 × 10−5 | 1.38 × 10−4 |
IR–hh (kBqU235eq) | 2.56 × 10−2 | 1.85 × 10−2 | 72.0 | 1.06 × 10−2 | 7.02 × 10−2 |
IR–e (CTUe) | 9.76 × 10−8 | 2.80 × 10−8 | 28.6 | 5.60 × 10−8 | 1.63 × 10−7 |
POFP (kgNMVOCeq) | 8.23 × 10−4 | 8.43 × 10−5 | 10.2 | 6.94 × 10−4 | 1.02 × 10−3 |
AP (molH+eq) | 1.54 × 10−3 | 1.21 × 10−4 | 7.8 | 1.34 × 10−3 | 1.80 × 10−3 |
EUT (molNeq) | 3.06 × 10−3 | 2.96 × 10−4 | 9.7 | 2.54 × 10−3 | 3.70 × 10−3 |
EUF (kgPeq) | 5.13 × 10−5 | 2.77 × 10−5 | 53.9 | 2.18 × 10−5 | 1.24 × 10−4 |
EUM (kgNeq) | 2.29 × 10−4 | 2.48 × 10−5 | 10.8 | 1.88 × 10−4 | 2.87 × 10−4 |
EFW (CTUe) | 5.48 × 100 | 1.35 × 100 | 24.7 | 3.53 × 100 | 8.66 × 100 |
LU (kgCdeficit) | 7.85 × 10−1 | 2.26 × 10−1 | 28.8 | 4.63 × 10−1 | 1.31 × 100 |
WRD (m3water) | 5.70 × 10−3 | 1.31 × 10−1 | 2298.7 | −2.76 × 10−1 | 2.19 × 10−1 |
MFRRD (kgSbeq) | 5.44 × 10−6 | 1.48 × 10−6 | 27.2 | 3.44 × 10−6 | 8.90 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cusenza, M.A.; Cellura, M.; Guarino, F.; Longo, S. Life Cycle Environmental Assessment of Energy Valorization of the Residual Agro-Food Industry. Energies 2021, 14, 5491. https://doi.org/10.3390/en14175491
Cusenza MA, Cellura M, Guarino F, Longo S. Life Cycle Environmental Assessment of Energy Valorization of the Residual Agro-Food Industry. Energies. 2021; 14(17):5491. https://doi.org/10.3390/en14175491
Chicago/Turabian StyleCusenza, Maria Anna, Maurizio Cellura, Francesco Guarino, and Sonia Longo. 2021. "Life Cycle Environmental Assessment of Energy Valorization of the Residual Agro-Food Industry" Energies 14, no. 17: 5491. https://doi.org/10.3390/en14175491
APA StyleCusenza, M. A., Cellura, M., Guarino, F., & Longo, S. (2021). Life Cycle Environmental Assessment of Energy Valorization of the Residual Agro-Food Industry. Energies, 14(17), 5491. https://doi.org/10.3390/en14175491