Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community
Abstract
:1. Introduction
2. Convergence Energy Prosumer System in an Energy-Sharing Community
2.1. Operating Schematic of Proposed Bi-Directional Thermal Prosumer
2.2. Overview of Case Study Community: Smart Village
3. Simulation
3.1. Thermal and Electric Demand Estimation
3.2. Convergence Energy Prosumer System Operation
3.3. Heat Pump System Performance
3.4. Photovoltaic System
3.5. Self-Consumption and Self-Sufficiency Analysis
4. Simulation Results
4.1. Thermal Performance of SHCHP Integrated with PV
4.2. Energy Performance of the Community
4.3. Self-Consumption and Operation Cost of SHCHP Compared with ASHP
4.4. Annual Operation Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, M.-H.; Kim, D.; Heo, J.; Lee, D.-W. Energy Performance Investigation of Net plus Energy Town: Energy Balance of the Jincheon Eco-Friendly Energy Town. Renew. Energy 2020, 147, 1784–1800. [Google Scholar] [CrossRef]
- Kim, M.-H.; Kim, D.; Heo, J.; Lee, D.-W. Techno-Economic Analysis of Hybrid Renewable Energy System with Solar District Heating for Net Zero Energy Community. Energy 2019, 187, 115916. [Google Scholar] [CrossRef]
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH). Integrating Smart Thermal Grids into Future Sustainable Energy Systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Sommer, T.; Sulzer, M.; Wetter, M.; Sotnikov, A.; Mennel, S.; Stettler, C. The Reservoir Network: A New Network Topology for District Heating and Cooling. Energy 2020, 199, 117418. [Google Scholar] [CrossRef]
- Schmidt, T.; Pauschinger, T.; Sørensen, P.A.; Snijders, A.; Djebbar, R.; Boulter, R.; Thornton, J. Design Aspects for Large-Scale Pit and Aquifer Thermal Energy Storage for District Heating and Cooling. Energy Procedia 2018, 149, 585–594. [Google Scholar] [CrossRef]
- Brange, L.; Englund, J.; Lauenburg, P. Prosumers in District Heating Networks—A Swedish Case Study. Appl. Energy 2016, 164, 492–500. [Google Scholar] [CrossRef]
- Brand, L.; Calvén, A.; Englund, J.; Landersjö, H.; Lauenburg, P. Smart District Heating Networks—A Simulation Study of Prosumers’ Impact on Technical Parameters in Distribution Networks. Appl. Energy 2014, 129, 39–48. [Google Scholar] [CrossRef]
- Lennermo, G.; Lauenburg, P.; Werner, S. Control of Decentralised Solar District Heating. Sol. Energy 2019, 179, 307–315. [Google Scholar] [CrossRef]
- Paiho, S.; Reda, F. Towards next Generation District Heating in Finland. Renew. Sustain. Energy Rev. 2016, 65, 915–924. [Google Scholar] [CrossRef]
- Rismanchi, B. District Energy Network (DEN), Current Global Status and Future Development. Renew. Sustain. Energy Rev. 2017, 75, 571–579. [Google Scholar] [CrossRef]
- Carpaneto, E.; Lazzeroni, P.; Repetto, M. Optimal Integration of Solar Energy in a District Heating Network. Renew. Energy 2015, 75, 714–721. [Google Scholar] [CrossRef]
- Buoro, D.; Pinamonti, P.; Reini, M. Optimization of a Distributed Cogeneration System with Solar District Heating. Appl. Energy 2014, 124, 298–308. [Google Scholar] [CrossRef]
- Marczinkowski, H.M.; Østergaard, P.A. Evaluation of Electricity Storage versus Thermal Storage as Part of Two Different Energy Planning Approaches for the Islands SamsØ and Orkney. Energy 2019, 175, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, H.; Schermeyer, H.; Bertsch, V.; Fichtner, W. Self-Consumption through Power-to-Heat and Storage for Enhanced PV Integration in Decentralised Energy Systems. Sol. Energy 2018, 163, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.U.; Ryu, S.R.; Kim, K.W. Simultaneous Heating and Cooling System with Thermal Storage Tanks Considering Energy Efficiency and Operation Method of the System. Energy Build. 2019, 205, 109518. [Google Scholar] [CrossRef]
- Kang, H.; Joo, Y.; Chung, H.; Kim, Y.; Choi, J. Experimental Study on the Performance of a Simultaneous Heating and Cooling Multi-Heat Pump with the Variation of Operation Mode. Int. J. Refrig. 2009, 32, 1452–1459. [Google Scholar] [CrossRef]
- Ghoubali, R.; Byrne, P.; Miriel, J.; Bazantay, F. Simulation Study of a Heat Pump for Simultaneous Heating and Cooling Coupled to Buildings. Energy Build. 2014, 72, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Byrne, P.; Ghoubali, R. Exergy Analysis of Heat Pumps for Simultaneous Heating and Cooling. Appl. Therm. Eng. 2019, 149, 414–424. [Google Scholar] [CrossRef]
- Kim, M.-H.; An, Y.; Joo, H.-J.; Lee, D.-W.; Yun, J.-H. Self-Sufficiency and Energy Savings of Renewable Thermal Energy Systems for an Energy-Sharing Community. Energies 2021, 14, 4284. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Long, C. Evaluation of Peer-to-Peer Energy Sharing Mechanisms Based on a Multiagent Simulation Framework. Appl. Energy 2018, 222, 993–1022. [Google Scholar] [CrossRef]
- Morstyn, T.; Farrell, N.; Darby, S.J.; McCulloch, M.D. Using Peer-to-Peer Energy-Trading Platforms to Incentivize Prosumers to Form Federated Power Plants. Nat. Energy 2018, 3, 94–101. [Google Scholar] [CrossRef]
- Ozcan, H.G.; Varga, S.; Gunerhan, H.; Hepbasli, A. Numerical and Experimental Work to Assess Dynamic Advanced Exergy Performance of an On-Grid Solar Photovoltaic-Air Source Heat Pump-Battery System. Energy Convers. Manag. 2021, 227, 113605. [Google Scholar] [CrossRef]
- Joe, J.; Dong, J.; Munk, J.; Kuruganti, T.; Cui, B. Virtual Storage Capability of Residential Buildings for Sustainable Smart City via Model-Based Predictive Control. Sustain. Cities Soc. 2021, 64, 102491. [Google Scholar] [CrossRef]
- Aoun, N.; Bavière, R.; Vallée, M.; Aurousseau, A.; Sandou, G. Modelling and Flexible Predictive Control of Buildings Space-Heating Demand in District Heating Systems. Energy 2019, 188, 116042. [Google Scholar] [CrossRef]
- Cai, J.; Braun, J.E.; Kim, D.; Hu, J. General Approaches for Determining the Savings Potential of Optimal Control for Cooling in Commercial Buildings Having Both Energy and Demand Charges. Sci. Technol. Built Environ. 2016, 22, 733–750. [Google Scholar] [CrossRef]
- Kim, M.-H.; Lee, D.-W.; An, Y.; Joo, H.-J. Applicability of Renewable Thermal Energy Systems on a Domestic Hot Water System for a Low-Carbon Energy Share Community. Korean J. Air-Cond. Refrig. Eng. 2020, 32, 532–541. [Google Scholar] [CrossRef]
- Kim, M.-H.; Lim, H.-W.; Shin, U.-C.; Kim, H.-J.; Kim, H.-K.; Kim, J.-K. Design and Energy Performance Evaluation of Plus Energy House. J. Korean Sol. Energy Soc. 2018, 38, 55–66. [Google Scholar] [CrossRef]
- Nguyen, S.; Peng, W.; Sokolowski, P.; Alahakoon, D.; Yu, X. Optimizing Rooftop Photovoltaic Distributed Generation with Battery Storage for Peer-to-Peer Energy Trading. Appl. Energy 2018, 228, 2567–2580. [Google Scholar] [CrossRef]
Residential Houses | Community Facility | |||
---|---|---|---|---|
Area (m2) | Total | 7202 | ||
Building | 1636 | 266 | ||
Total floor | 2374 | 1192 | ||
Stories | 2 | 2 | ||
Materials | Lightweight steel structures combined with reinforced concrete structures | Reinforced concrete structures | ||
Infiltration (1/h@50 pa) | 0.3 | 1.5 | ||
U-value (W/(m2∙K) | External wall | Direct | 0.147 | 0.147 |
Indirect | - | 0.195 | ||
Roof | 0.103 | 0.107 | ||
Floor | Direct | 0.138 | 0.140 | |
Indirect | 0.175 | 0.214 | ||
Window | 0.997, 0.963 | 0.997 | ||
SHGC | Window | 0.35 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-H.; Lee, D.-W.; Kim, D.-W.; An, Y.-S.; Yun, J.-H. Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community. Energies 2021, 14, 5544. https://doi.org/10.3390/en14175544
Kim M-H, Lee D-W, Kim D-W, An Y-S, Yun J-H. Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community. Energies. 2021; 14(17):5544. https://doi.org/10.3390/en14175544
Chicago/Turabian StyleKim, Min-Hwi, Dong-Won Lee, Deuk-Won Kim, Young-Sub An, and Jae-Ho Yun. 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community" Energies 14, no. 17: 5544. https://doi.org/10.3390/en14175544
APA StyleKim, M. -H., Lee, D. -W., Kim, D. -W., An, Y. -S., & Yun, J. -H. (2021). Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community. Energies, 14(17), 5544. https://doi.org/10.3390/en14175544