Intelligent Transportation Systems for Electric Vehicles
1. Introduction
2. State of the Art
3. Smart Energy Management
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Greenhouse Gas Emissions from Transport in Europe—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12 (accessed on 18 August 2021).
- Letmathe, P.; Suares, M. A consumer-oriented total cost of ownership model for different vehicle types in Germany. Transp. Res. Part Transp. Environ. 2017, 57, 314–335. [Google Scholar] [CrossRef]
- Electric Vehicles (EV) and Electric Vehicle Charging User Cases Driven Approach|AIOTI. Available online: https://aioti.eu/electric-vehicles-ev-and-electric-vehicle-charging-user-cases-driven-approach/ (accessed on 18 August 2021).
- Moghaddam, V.; Ahmad, I.; Habibi, D.; Phung, Q.V. Smart Charging Strategy for Electric Vehicle Charging Stations. IEEE Trans. Transp. Electrif. 2017, 4, 76–88. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, L.; Coskun, S.; Pang, H.; Cui, Y.; Xi, J. Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook. Energies 2020, 13, 3352. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Sheng, Z.; Lu, S. Multi-Objective Shark Smell Optimization Algorithm Using Incorporated Composite Angle Cosine for Automatic Train Operation. Energies 2020, 13, 714. [Google Scholar] [CrossRef] [Green Version]
- Rizopoulos, D.; Esztergár-Kiss, D. A Method for the Optimization of Daily Activity Chains Including Electric Vehicles. Energies 2020, 13, 906. [Google Scholar] [CrossRef] [Green Version]
- Varga, B.O.; Mariasiu, F.; Miclea, C.D.; Szabo, I.; Sirca, A.A.; Nicolae, V. Direct and Indirect Environmental Aspects of an Electric Bus Fleet Under Service. Energies 2020, 13, 336. [Google Scholar] [CrossRef] [Green Version]
- Cazzato, F.; Di Clerico, M.; Falvo, M.C.; Ferrero, S.; Vivian, M. New Dispatching Paradigm in Power Systems Including EV Charging Stations and Dispersed Generation: A Real Test Case. Energies 2020, 13, 944. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Huang, J.; Han, Y.; Yang, Y.; Luo, L. A Study on Electric Vehicles Participating in the Load Regulation of Urban Complexes. Energies 2020, 13, 2939. [Google Scholar] [CrossRef]
- Martins, J.P.; Ferreira, J.C.; Monteiro, V.; Afonso, J.A.; Afonso, J.L. IoT and Blockchain Paradigms for EV Charging System. Energies 2019, 12, 2987. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Merced, D.; Jalalpour, M.; Bai, H. Deployment of a Bidirectional MW-Level Electric-Vehicle Extreme Fast Charging Station Enabled by High-Voltage SiC and Intelligent Control. Energies 2020, 13, 1840. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Pei, M. Optimal Design for a Shared Swap Charging System Considering the Electric Vehicle Battery Charging Rate. Energies 2020, 13, 1213. [Google Scholar] [CrossRef] [Green Version]
- Canizes, B.; Soares, J.; Costa, A.; Pinto, T.; Lezama, F.; Novais, P.; Vale, Z. Electric Vehicles’ User Charging Behaviour Simulator for a Smart City. Energies 2019, 12, 1470. [Google Scholar] [CrossRef] [Green Version]
- Canizes, B.; Soares, J.; Vale, Z.; Corchado, J. Optimal Distribution Grid Operation Using DLMP-Based Pricing for Electric Vehicle Charging Infrastructure in a Smart City. Energies 2019, 12, 686. [Google Scholar] [CrossRef] [Green Version]
- Mo, W.; Yang, C.; Chen, X.; Lin, K.; Duan, S. Optimal Charging Navigation Strategy Design for Rapid Charging Electric Vehicles. Energies 2019, 12, 962. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, V.; Afonso, J.; Ferreira, J.; Afonso, J. Vehicle Electrification: New Challenges and Opportunities for Smart Grids. Energies 2018, 12, 118. [Google Scholar] [CrossRef] [Green Version]
- Alface, G.; Ferreira, J.C.; Pereira, R. Electric Vehicle Charging Process and Parking Guidance App. Energies 2019, 12, 2123. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.-W.; Lai, Y.-H.; Zhong, K.-Q.; Yin, T.-K.; Perng, J.-W. Developing an On-Road Object Detection System Using Monovision and Radar Fusion. Energies 2019, 13, 116. [Google Scholar] [CrossRef] [Green Version]
- Energies. Available online: https://www.mdpi.com/journal/energies/special_issues/Intelligent_Systems_Electric_Vehicles (accessed on 23 August 2021).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Saharan, S.; Bawa, S.; Kumar, N. Dynamic pricing techniques for Intelligent Transportation System in smart cities: A systematic review. Comput. Commun. 2020, 150, 603–625. [Google Scholar] [CrossRef]
- Yang, C.; Zha, M.; Wang, W.; Liu, K.; Xiang, C. Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system. IET Intell. Transp. Syst. 2020, 14, 702–711. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Yu, Y.; Xiong, X.; Zhao, S.; Shen, W. Energy management of plug-in hybrid electric vehicle based on trip characteristic prediction. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2020, 234, 2239–2259. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, X.; Langari, R.; Cao, D. Energy management strategies of connected HEVs and PHEVs: Recent progress and outlook. Prog. Energy Combust. Sci. 2019, 73, 235–256. [Google Scholar] [CrossRef]
- Butler, L.; Yigitcanlar, T.; Paz, A. Smart urban mobility innovations: A comprehensive review and evaluation. IEEE Access 2020, 8, 196034–196049. [Google Scholar] [CrossRef]
- Sedighizadeh, M.; Mohammadpour, A.; Alavi, S.M.M. A daytime optimal stochastic energy management for EV commercial parking lots by using approximate dynamic programming and hybrid big bang big crunch algorithm. Sustain. Cities Soc. 2019, 45, 486–498. [Google Scholar] [CrossRef]
- Ji, C.; Liu, Y.; Lyu, L.; Li, X.; Liu, C.; Peng, Y.; Xiang, Y. A Personalized Fast-Charging Navigation Strategy Based on Mutual Effect of Dynamic Queuing. IEEE Trans. Ind. Appl. 2020, 56, 5729–5740. [Google Scholar] [CrossRef]
- Chaudhary, R.; Jindal, A.; Aujla, G.S.; Aggarwal, S.; Kumar, N.; Choo, K.-K.R. BEST: Blockchain-based secure energy trading in SDN-enabled intelligent transportation system. Comput. Secur. 2019, 85, 288–299. [Google Scholar] [CrossRef]
- Kim, Y.; Figueroa-Santos, M.; Prakash, N.; Baek, S.; Siegel, J.B.; Rizzo, D.M. Co-optimization of speed trajectory and power management for a fuel-cell/battery electric vehicle. Appl. Energy 2020, 260. [Google Scholar] [CrossRef]
- Qian, T.; Shao, C.; Wang, X.; Shahidehpour, M. Deep Reinforcement Learning for EV Charging Navigation by Coordinating Smart Grid and Intelligent Transportation System. IEEE Trans. Smart Grid 2020, 11, 1714–1723. [Google Scholar] [CrossRef]
- Hu, B.; Feng, Y.; Sun, J.; Gao, Y.; Tan, J. Driving preference analysis and electricity pricing strategy comparison for electric vehicles in smart city. Inf. Sci. 2019, 504, 202–220. [Google Scholar] [CrossRef]
- Liu, X. Dynamic response characteristics of fast charging station-evs on interaction of multiple vehicles. IEEE Access 2020, 8, 42404–42421. [Google Scholar] [CrossRef]
- Zhang, Y.; Ai, Z.; Chen, J.; You, T.; Du, C.; Deng, L. Energy-Saving Optimization and Control of Autonomous Electric Vehicles With Considering Multiconstraints. IEEE Trans. Cybern. 2021. [Google Scholar] [CrossRef]
- Alturiman, A.; Alsabaan, M. Impact of two-way communication of traffic light signal-to-vehicle on the electric vehicle state of charge. IEEE Access 2019, 7, 8570–8581. [Google Scholar] [CrossRef]
- Ejaz, W.; Naeem, M.; Sharma, S.K.; Khattak, A.M.; Ramzan, M.R.; Ali, A.; Anpalagan, A. IoV-Based Deployment and Scheduling of Charging Infrastructure in Intelligent Transportation Systems. IEEE Sens. J. 2021, 21, 15504–15514. [Google Scholar] [CrossRef]
- Li, X.; Xiang, Y.; Lyu, L.; Ji, C.; Zhang, Q.; Teng, F.; Liu, Y. Price Incentive-Based Charging Navigation Strategy for Electric Vehicles. IEEE Trans. Ind. Appl. 2020, 56, 5762–5774. [Google Scholar] [CrossRef]
- Liu, Q.; He, H. The velocity regulation of power consumption with traffic lights for electric vehicles. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2019, 233, 2312–2322. [Google Scholar] [CrossRef]
- Laha, A.; Yin, B.; Cheng, Y.; Cai, L.X.; Wang, Y. Game Theory Based Charging Solution for Networked Electric Vehicles: A Location-Aware Approach. IEEE Trans. Veh. Technol. 2019, 68, 6352–6364. [Google Scholar] [CrossRef]
- Taherzadeh, E.; Radmanesh, H.; Mehrizi-Sani, A. A Comprehensive Study of the Parameters Impacting the Fuel Economy of Plug-In Hybrid Electric Vehicles. IEEE Trans. Intell. Veh. 2020, 5, 596–615. [Google Scholar] [CrossRef]
- Min, Q.; Li, J.; Liu, B.; Li, J.; Sun, F.; Sun, C. Guided model predictive control for connected vehicles with hybrid energy systems. Energy 2021, 230. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Tang, X.; Lin, X. Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios. Energy 2020, 196. [Google Scholar] [CrossRef]
- Zhang, Z.; He, H.; Guo, J.; Han, R. Velocity prediction and profile optimization based real-time energy management strategy for Plug-in hybrid electric buses. Appl. Energy 2020, 280. [Google Scholar] [CrossRef]
- Monteiro, V.; Exposto, B.; Ferreira, J.C.; Afonso, J.L. Improved Vehicle-to-Home (iV2H) Operation Mode: Experimental Analysis of the Electric Vehicle as Off-Line UPS. IEEE Trans. Smart Grid 2017, 8, 2702–2711. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Ferreira da Silva, C.; Martins, J.P. Roaming Service for Electric Vehicle Charging Using Blockchain-Based Digital Identity. Energies 2021, 14, 1686. [Google Scholar] [CrossRef]
Paper | References | # Documents |
---|---|---|
Review | [5] | 1 |
Optimization | [5,6,7] | 3 |
EV HEV | [7,8,9,10,11,12,13,14,15,16,17,18] [5] | 12 1 |
Urban environment/ Urban Transportation | [7,10] [6,8] | 2 2 |
Intelligent transportation systems | [7] | 1 |
Energy Management/ Fast Charging | [5,9,13] [12,16] | 3 2 |
Blockchain | [11] | 1 |
IoT | [11,16] | 2 |
Electric charging behavior | [14,15,16,17] | 4 |
Energy prices | [14,15,17] | 3 |
Computer Vision-object recognition | [19] | 1 |
Artificial Intelligence-Prediction | [5,7] | 2 |
Mobile APP | [11,18] | 2 |
Paper | Reference | # Documents |
---|---|---|
Review | [22,23,24,25,26] | 5 |
EV | [22,27,28,29,30,31,32,33,34,35,36,37,38,39] | 14 |
Plug-in hybrid electric vehicles (PHEVs) | [23,24,25,39,40,41,42,43] | 7 |
energy management | [23,24,25,27,29,34,38,40,41,42,43] | 11 |
intelligent transportation systems | [22,23,24,25,26,27,29,31,32,33,35,37,39,40,41,42,43] | 17 |
prediction | [27,41] | 2 |
Optimization | [30,34,35,36,38] | 5 |
Fast Charging | [28,33] | 2 |
Smart Grid | [31,39] | 2 |
Energy Prices Charging Cost | [22,27,28,31,37] [36] | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elvas, L.B.; Ferreira, J.C. Intelligent Transportation Systems for Electric Vehicles. Energies 2021, 14, 5550. https://doi.org/10.3390/en14175550
Elvas LB, Ferreira JC. Intelligent Transportation Systems for Electric Vehicles. Energies. 2021; 14(17):5550. https://doi.org/10.3390/en14175550
Chicago/Turabian StyleElvas, Luis B., and Joao C Ferreira. 2021. "Intelligent Transportation Systems for Electric Vehicles" Energies 14, no. 17: 5550. https://doi.org/10.3390/en14175550
APA StyleElvas, L. B., & Ferreira, J. C. (2021). Intelligent Transportation Systems for Electric Vehicles. Energies, 14(17), 5550. https://doi.org/10.3390/en14175550