Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE3-4 Blends
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Setup
2.2. Image Processing
2.3. Experimental Procedure
3. Results and Analysis
3.1. Definition of Spray Parameters
3.2. Effect of Ambient Temperature on Fuel Spray Characteristics
3.3. Effect of Injection Pressure on Spray Characteristics
3.4. Microscopic Spray Characteristics
4. Conclusions
- When the ambient temperature increases, the liquid cone angles decrease and the vapor cone angles increase for test fuels. When the ambient temperature is 673 K, P0 has the smallest average vapor phase cone angles, but the average liquid cone angle is largest.
- For the ambient temperatures of 573 K and 623 K, the P0, P20 and P50 vapor and liquid phase penetrations do not change much. When the temperature increases to 673 K, the vapor and liquid phase penetration distances of the three fuels decrease, while the liquid phase penetration distance decreases the most.
- The vapor phase projection areas of P20 and P50 show that the higher the ambient temperature, the larger the projected area, whereas the liquid phase projected area shows the opposite trend. The vapor and liquid phase projections of P0 at ambient temperatures of 573 K and 623 K do not change much, and the situation improved when the temperature increased to 673 K.
- With the IP increase, the vapor phase penetration distance and the vapor phase cone angles of P0, P20 and P50 increase. Meanwhile, the average liquid phase cone angles of the three fuels will decrease. The liquid phase penetration distances increase in P0 and P20 with the IP increase, although the change in the liquid phase penetration distance of P50 is not obvious.
- As the IP increases, the vapor and liquid phase projection areas of the test fuels increase. Compared with the P0, the vapor and liquid phase projection area curves of the blends can be distinguished at an early stage, indicating that the blended fuel can undergo earlier diffusion and evaporation, which are critical to the mixing of oil and gas in the cylinder during actual engine operation.
- For the vapor phase, both the smallest cone angle and penetration distance is at 673 K and 80 MPa, while the largest projected area is at 673 K and 160 MPa of P50. For the liquid phase, it has the largest cone angle at 673 K and 160 MPa, and smallest penetration at 673 K and 80 MPa. At 573 K, 160 MPa, the liquid phase projected area of P0 is the largest of all tested points.
- When the temperature and IPs increase, the SMD of the three fuels decrease, and the SMD hierarchy between the three fuels is P0 > P20 > P50. As the IPs and temperature increase, the droplet size decreases, especially when the IP is 160 MPa and the temperature is 363 K, the droplet size distribution of P50 and P20 is bimodal, and the droplet size is smaller.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
V | the vapor phase | ECU | electronic control unit |
L | the liquid phase | HC | unburned hydrocarbon |
SV | the vapor phase spray tip penetration | IP | injection pressure |
SL | the liquid phase spray tip penetration | LTC | low temperature combustion |
θV | the vapor phase spray cone angle | NOX | nitrogen oxide |
θL | the liquid phase spray cone angle | P0 | pure diesel |
AV | the vapor phase projected areas | PODE | polyoxymethylene dimethyl ether |
AL | the liquid phase projected areas | PM | particulate matter |
CVCB | constant volume combustion bomb | P20 | 80% diesel + 20% PODE3-4 |
CO | carbon monoxide | P50 | 50% diesel + 50% PODE3-4 |
DBI | diffuse back-illumination | SMD | Sauter mean diameter |
References
- Yannopoulos, M.; EL-Seesy, A.; Abdel-Rahman, A.; Bady, M. Influence of adding aluminum oxide nanoparticles to diesterol blends on the combustion and exhaust emission characteristics of a diesel engine. Exp. Therm. Fluid Sci. 2018, 98, 634–644. [Google Scholar]
- Valipour, M. Future of agricultural water management in Africa. Arch. Agron. Soil Sci 2014, 61, 907–927. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, S.; Huang, R.; Zhang, Y.; Xu, S. Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber. Appl. Energy 2017, 185, 519–530. [Google Scholar] [CrossRef]
- Han, K.; Yang, B.; Zhao, C.; Fu, G.; Ma, X.; Song, G. Experimental study on evaporation characteristics of ethanol–diesel blend fuel droplet. Exp. Therm. Fluid Sci. 2016, 70, 381–388. [Google Scholar] [CrossRef]
- Guo, H.; Liu, S.; He, J. Performances and emissions of new glycol ether blends in diesel fuel used as oxygenated fuel for diesel engines. J. Energy Eng. 2016, 142, 04015003. [Google Scholar] [CrossRef]
- Awad, O.; Mamat, R.; Ali, O.; Sidik, N.; Yusaf, T.; Kadirgama, K.; Kettner, M. Alcohol and ether as alternative fuels in spark ignition engine: A review. Renew. Sustain. Energy Rev. 2018, 82, 2586–2605. [Google Scholar] [CrossRef]
- Jamrozik, A. The effect of the alcohol content in the fuel mixture on the performance and emissions of a direct injection diesel engine fueled with diesel-methanol and diesel-ethanol blends. Energy Convers. Manag. 2017, 148, 461–476. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.; Morone, P. A New Socio-economic Indicator to Measure the Performance of Bioeconomy Sectors in Europe. Ecol. Econ. 2020, 176, 106724. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.; Huisingh, D.; Morone, P. A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond? Renew. Energy 2021, 163, 1660–1672. [Google Scholar] [CrossRef]
- Restrepo, J.B.; Paternina-Arboleda, C.D.; Bula, A.J. 1,2—Propanediol Production from Glycerol Derived from Biodiesel’s Production: Technical and Economic Study. Energies 2021, 14, 5081. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A.; Elkatory, M.R.; Ragab, S.; El-Nemr, M.A.; Pantaleo, A. Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe2O3 NPs on Biogas Production from Red Algae Pterocladia capillacea. Sustainability 2021, 13, 9275. [Google Scholar] [CrossRef]
- Lapuerta, M.; Armas, O.; Rodriguez-Fernandez, J. Effect of biodiesel fuels on diesel engine emissions. Prog. Energy Combust. 2008, 34, 198–223. [Google Scholar] [CrossRef]
- Kent-Hoekman, S.; Robbins, C. Review of the effects of biodiesel on NOx emissions. Fuel Process. Technol. 2012, 96, 237–249. [Google Scholar] [CrossRef]
- Szybist, J.; Song, J.; Alam, M.; Boehman, A. Biodiesel combustion, emissions and emission control. Fuel Process. Technol. 2007, 88, 679–691. [Google Scholar] [CrossRef]
- Geng, P.; Cao, E.; Tan, Q.; Wei, L. Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review. Renew. Sustain. Energy Rev. 2016, 71, 523–534. [Google Scholar] [CrossRef]
- Li, F.; Fu, W.; Yi, B.; Song, L.; Liu, T.; Wang, X.; Wang, C.; Lei, Y.; Lin, Q. Comparison of macroscopic spray characteristics between biodiesel-pentanol blends and diesel. Exp. Therm. Fluid Sci. 2018, 98, 523–533. [Google Scholar] [CrossRef]
- Suh, H.; Yoon, S.; Chang, S. Effect of Multiple Injection Strategies on the Spray Atomization and Reduction of Exhaust Emissions in a Compression Ignition Engine Fueled with Dimethyl Ether (DME). Energy Fuel 2010, 24, 1323–1332. [Google Scholar] [CrossRef]
- Song, H.; Liu, C.; Li, F.; Wang, Z.; He, X.; Shuai, S.; Wang, J. A comparative study of using diesel and PODEn as pilot fuels for natural gas dual-fuel combustion. Fuel 2017, 188, 418–426. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Liu, H.; Liu, F.; Wang, Z.; Wang, J. Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends. Appl. Energy 2017, 206, 425–431. [Google Scholar] [CrossRef]
- Burger, J.; Siegert, M.; Ströfer, E.; Hasse, H. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts. Fuel 2010, 89, 3315–3319. [Google Scholar] [CrossRef]
- Lumpp, B.; Rothe, D.; Pastötter, C.; Lämmermann, R.; Jacob, E. Oxymethylene ethers as diesel fuel additives of the future. MTZ World Emaga. 2011, 72, 34–38. [Google Scholar] [CrossRef]
- Pellegrini, L.; Marchionna, M.; Patrini, R.; Beatrice, C.; Del Giacomo, N.; Guido, C. Combustion behaviour and emission performance of neat and blended polyoxymethylene dimethyl ethers in a light-duty diesel engine. Microelectron Eng. 2012, 87, 778–781. [Google Scholar]
- Pellegrini, L.; Marchionna, M.; Patrini, R.; Florio, S. Emission performance of neat and blended polyoxymethylene dimethyl ethers in an old light-duty diesel car. In Proceedings of the SAE International SAE 2013 World Congress& Exhibition, Detroit, MI, USA, 16–18 April 2013. [Google Scholar]
- Iannuzzi, S.E.; Barro, C.; Boulouchos, K.; Burger, J. Combustion behavior and soot formation/oxidation of oxygenated fuels in a cylindrical constant volume chamber. Fuel 2016, 167, 49–59. [Google Scholar] [CrossRef]
- Iannuzzi, S.E.; Barro, C.; Boulouchos, K.; Burger, J. POMDME-diesel blends: Evaluation of performance and exhaust emissions in a single cylinder heavy-duty diesel engine. Fuel 2017, 203, 57–67. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Q.; Teng, W.; Pan, M.; Liu, C.; Wang, Q. Improvement of combustion performance and emissions in diesel engines by fueling n-butanol/diesel/PODE3–4 mixtures. Appl. Energy 2017, 227, 38–48. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, J.; Wang, J.; Shuai, S. Study on combustion and emission characteristics of Polyoxymethylene dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines. Appl. Energy 2017, 185, 1393–1402. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Wang, J.; He, X.; Zheng, Y.; Tang, Q.; Wang, J. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends. Energy 2015, 88, 793–800. [Google Scholar] [CrossRef]
- Li, D.; Gao, Y.; Liu, S.; Ma, Z.; Wei, Y. Effect of polyoxymethylene dimethyl ethers addition on spray and atomization characteristics using a common rail diesel injection system. Fuel 2016, 186, 235–247. [Google Scholar] [CrossRef]
- Gimeno, J.; Bracho, G.; Martí-Aldaraví, P.; Peraza, J.E. Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part I: Inert atmosphere. Energy Convers. Manag. 2016, 126, 1146–1156. [Google Scholar] [CrossRef]
- Manin, J.; Bardi, M.; Pickett, L. Evaluation of the liquid length via diffused back-illumination imaging in vaporizing diesel sprays. In Proceedings of the Proposed for Presentation at the COMODIA 2012, Fukuoka, Japan, 23–26 July 2012; p. 2012. [Google Scholar]
- Payri, R.; Giraldo, J.; Ayyapureddi, S.; Versey, Z. Experimental and analytical study on vapor phase and liquid penetration for a high pressure diesel injecto. Appl. Therm. Eng. 2018, 137, 721–728. [Google Scholar] [CrossRef]
- Huang, S.; Deng, P.; Huang, R.; Wang, Z.; Ma, Y.; Dai, H. Visualization research on spray atomization, evaporation and combustion processes of ethanol–diesel blend under LTC conditions. Energy Convers. Manag. 2015, 106, 911–920. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, S.; Huang, R.; Zhang, Y.; Xu, S. Spray and evaporation characteristics of n-pentanol–diesel blends in a constant volume chamber. Energy Convers. Manag. 2016, 130, 240–251. [Google Scholar] [CrossRef]
- Payri, R.; Viera, J.P.; Gopalakrishnan, V.; Szymkowicz, P.G. The effect of nozzle geometry over the evaporative spray formation for three different fuels. Fuel 2017, 188, 645–660. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Botero, M.; Sheng, Y.; Dreyer, J.A.; Xu, R.; Yang, W.; Kraft, M. Sooting characteristics of polyoxymethylene dimethyl ether blends with diesel in a diffusion flame. Fuel 2018, 224, 499–506. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Q.; Shi, C.; Wang, Q.; Zhou, C. Experimental study on spray, combustion and emission characteristics of pine oil/diesel blends in a multi-cylinder diesel engine. Fuel Process. Technol. 2016, 153, 137–148. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Li, Y.; Zheng, Z.; Xue, Z.; Shang, H.; Yao, M. Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine. Fuel 2016, 177, 206–216. [Google Scholar] [CrossRef]
- Kang, M.; Song, H.; Jin, F.; Chen, J. Synthesis and physicochemical characterization of polyoxymethylene dimethyl ethers. J. Fuel Chem. Technol. 2017, 45, 837–845. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, Z.; Jiang, Z.; Huang, R. Test of the Influence of Injection Pressure on the Combustion of Mixed Fuel. Equip. Manuf. Technol. 2018, 5, 142–144. [Google Scholar]
- Wang, J.; Wu, F.; Xiao, J.; Shuai, S. Oxygenated blend design and its effects on reducing diesel particulate emissions. Fuel 2009, 88, 2037–2045. [Google Scholar] [CrossRef]
- Ramirez-Verduzco, L. Density and viscosity of biodiesel as a function of temperature: Empirical models. Renew. Sustain. Energy Rev. 2013, 19, 652–665. [Google Scholar] [CrossRef]
- Sohrabiasl, I.; Gorji-Bandpy, M.; Hajialimohammadi, A.; Mirsalim, M.A. Effect of open cell metal porous media on evolution of high pressure diesel fuel spray. Fuel 2017, 206, 133–144. [Google Scholar] [CrossRef]
- Naber, J.; Siebers, D. Effects of gas density and vaporization on penetration and dispersion of diesel Sprays. SAE Tech. Pap. 1996, 105, 82–111. [Google Scholar]
- Kim, W.; Lee, K.; Chang, S. Spray and atomization characteristics of isobutene blended DME fuels. J. Nat. Gas Sci. Eng. 2015, 22, 98–106. [Google Scholar] [CrossRef]
- Dahmen, N.; Arnold, U.; Djordjevic, N.; Henrich, T.; Kolb, T.; Leibold, H.; Sauer, J. High pressure in synthetic fuels production. J. Supercrit. Fluid 2015, 96, 124–132. [Google Scholar] [CrossRef]
- Yu, S.; Yin, B.; Jia, H.; Wen, S.; Li, X.; Yu, J. Theoretical and experimental comparison of internal flow and spray characteristics between diesel and biodiesel. Fuel 2017, 2018, 20–29. [Google Scholar] [CrossRef]
- Valentino, G.; Allocca, L.; Iannuzzi, S.; Montanaro, A. Biodiesel/mineral diesel fuel mixtures: Spray evolution and engine performance and emissions characterization. Energy 2011, 36, 3924–3932. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, H.; Jiang, C.; Wyszynski, M.L. Experimental study on microscopic and macroscopic characteristics of diesel spray with split injection. Fuel 2016, 174, 140–152. [Google Scholar] [CrossRef]
Measurement | % Uncertainty | Measurement Technique |
---|---|---|
Pressure pickup | ±0.1 | Magnetic pickup principle |
Temperature | ±0.15 | Thermocouple |
Diesel fuel measurement | ±1 | Volumetric measurement |
PODE3-4 fuel measurement | ±1 | Volumetric measurement |
Parameter | Numerical Value |
---|---|
Fuels | P0, P20, P50 |
Injection pressure/MPa | 80, 120, 160 |
Ambient temperature/K | 573,623,673 (macroscopic) 303 363 (microscopic) |
Ambient Pressure/MPa | 5 (macroscopic) 0.1 (microscopic) |
Filming speed/fps | 20,000 |
Injection pulse width/ms | 1.0 |
Parameter | PODE2 | PODE3 | PODE4 |
---|---|---|---|
Density (298 K)/g·cm−3 | 0.96 | 1.02 | 1.06 |
Viscosity (298 K)/(mm2·s−1) | 0.64 | 1.05 | 1.75 |
Oxygen content/(%) | 45.3 | 47.1 | 48.2 |
Cetane value | 63 | 70 | 90 |
Flash point/(T·K−1) | 289.1 | 293.1 | 350.1 |
Low calorific value/(MJ·kg−1) | 22.44 | 19.14 | 18.39 |
Sulfur content/(%) | 0 | 0 | 0 |
Parameter | PODE3-4 | P0 |
---|---|---|
Density (298 K)/g·cm−3 | 1.02 * | 0.86 |
Viscosity (298 K)/(mm2·s−1) | 1.05 ** | 3.44 |
Surface tension/(10−3N·m−1) | 35.67 * | 27.74 |
Oxygen content/(%) | 46.98 * | 0 |
Cetane value | 78.6 * | 56.5 |
Flash point/(T·K−1) | 297.64 * | >328.1 |
Low calorific value/(MJ·kg−1) | 19.2 * | 42.80 |
Sulfur content/(%) | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, S.; Guo, X.; Jia, C.; Huang, X.; Wang, Y.; Huang, H. Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE3-4 Blends. Energies 2021, 14, 5559. https://doi.org/10.3390/en14175559
Chen Y, Liu S, Guo X, Jia C, Huang X, Wang Y, Huang H. Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE3-4 Blends. Energies. 2021; 14(17):5559. https://doi.org/10.3390/en14175559
Chicago/Turabian StyleChen, Yulin, Songtao Liu, Xiaoyu Guo, Chaojie Jia, Xiaodong Huang, Yaodong Wang, and Haozhong Huang. 2021. "Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE3-4 Blends" Energies 14, no. 17: 5559. https://doi.org/10.3390/en14175559
APA StyleChen, Y., Liu, S., Guo, X., Jia, C., Huang, X., Wang, Y., & Huang, H. (2021). Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE3-4 Blends. Energies, 14(17), 5559. https://doi.org/10.3390/en14175559