Online Parameter Estimation for Fault Identification in Multi-Terminal DC Distribution Grids
Abstract
:1. Introduction
- (1)
- The proposed fault identification method can cover both PG and PP faults in DC lines with single- or double-ended fault current injection, which has improved applicability in the protection of MTDC distribution grids.
- (2)
- Unlike those fault location methods that only estimate the fault distance, the proposed fault identification method also provides the estimated value of the fault resistance, with which the fault severity can be determined.
- (3)
- Using the Kalman filter-based parameter estimation algorithm, the proposed method can achieve fast fault identification with a short response time of less than 1 ms. Its speed and effectiveness in different fault scenarios were verified through real-time simulation.
2. Challenges to Online Fault Identification in MTDC Distribution Grids
2.1. Grid Architecture
2.2. Response Time
2.3. Grounding Strategy
3. DC Line Model
3.1. DC Line Model with PG Fault
3.2. DC Line Model with PP Fault
3.3. Representation of Fault Parameters
4. Fault Identification Method
4.1. Kalman Filter Algorithm
4.2. Fault Identification Procedure
- (1)
- Signal acquisition: the input values , and are acquired in real time. To obtain and in PP and PG faults, either PP or PG node voltages are needed. Meanwhile, the fault current is calculated from the differential of the current signals measured at the both ends of faulty cable.
- (2)
- Kalman filter: with the known , and , y and of the Kalman filter are obtained with (29) and (30) in real time. Then the iterative prediction and correction of Kalman filter algorithm are performed. The iteration converges when the relative error between two sequential is below a threshold , i.e.
- (3)
- Fault parameter calculation: based on , the estimates of fault distance factor and the fault resistance can be obtained with (20) and (21), respectively. With , the fault distance can be obtained:
5. Verification Test
5.1. System Model
5.2. Test Setup
5.3. Influences of Fault Types and Current Injection Modes
5.3.1. Fault Types
5.3.2. Fault Current Injection Mode
5.4. Accuracy and Response Time
5.5. Comparison with Existing Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siddique, H.A.B.; De Doncker, R.W. Evaluation of DC Collector-Grid Configurations for Large Photovoltaic Parks. IEEE Trans. Power Deliv. 2018, 33, 311–320. [Google Scholar] [CrossRef]
- Xiao, L.; Lin, L.; Liu, Y. Discussions on the Architecture and Operation Mode of Future Power Grids. Energies 2011, 4, 1025–1035. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Monti, A.; Hu, J.; De Doncker, R.W. Protection of Dual-Active-Bridge Converters Against Underdamped Surge Current by Current Limiting Reactor. In Proceedings of the 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Charlotte, NC, USA, 25–28 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Gertler, J.J. Survey of model-based failure detection and isolation in complex plants. IEEE Control Syst. Mag. 1988, 8, 3–11. [Google Scholar] [CrossRef]
- Zhang, C.; Song, G.; Wang, T.; Yang, L. Single-Ended Traveling Wave Fault Location Method in DC Transmission Line Based on Wave Front Information. IEEE Trans. Power Deliv. 2019, 34, 2028–2038. [Google Scholar] [CrossRef]
- Azizi, S.; Sanaye-Pasand, M.; Abedini, M.; Hasani, A. A Traveling-Wave-Based Methodology for Wide-Area Fault Location in Multiterminal DC Systems. IEEE Trans. Power Deliv. 2014, 29, 2552–2560. [Google Scholar] [CrossRef]
- Nanayakkara, O.M.K.K.; Rajapakse, A.D.; Wachal, R. Traveling-Wave-Based Line Fault Location in Star-Connected Multiterminal HVDC Systems. IEEE Trans. Power Deliv. 2012, 27, 2286–2294. [Google Scholar] [CrossRef]
- Feng, X.; Qi, L.; Pan, J. A Novel Fault Location Method and Algorithm for DC Distribution Protection. IEEE Trans. Ind. Appl. 2017, 53, 1834–1840. [Google Scholar] [CrossRef]
- Christopher, E.; Sumner, M.; Thomas, D.W.P.; Wang, X.; de Wildt, F. Fault Location in a Zonal DC Marine Power System Using Active Impedance Estimation. IEEE Trans. Ind. Appl. 2013, 49, 860–865. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, C.; Xu, Q. A Fault Location Method Suitable for Low-Voltage DC Line. IEEE Trans. Power Deliv. 2020, 35, 194–204. [Google Scholar] [CrossRef]
- Liu, W.; Liu, F.; Zha, X.; Huang, M.; Chen, C.; Zhuang, Y. An Improved SSCB Combining Fault Interruption and Fault Location Functions for DC Line Short-Circuit Fault Protection. IEEE Trans. Power Deliv. 2019, 34, 858–868. [Google Scholar] [CrossRef]
- Yang, Q.; Li, J.; Le Blond, S.; Wang, C. Artificial neural network based fault detection and fault location in the DC microgrid. Energy Procedia 2016, 103, 129–134. [Google Scholar] [CrossRef]
- Karmacharya, I.M.; Gokaraju, R. Fault Location in Ungrounded Photovoltaic System Using Wavelets and ANN. IEEE Trans. Power Deliv. 2018, 33, 549–559. [Google Scholar] [CrossRef]
- Johnson, J.M.; Yadav, A. Complete protection scheme for fault detection, classification and location estimation in HVDC transmission lines using support vector machines. IET Sci. Meas. Technol. 2017, 11, 279–287. [Google Scholar] [CrossRef]
- Tzelepis, D.; Dyśko, A.; Fusiek, G.; Niewczas, P.; Mirsaeidi, S.; Booth, C.; Dong, X. Advanced fault location in MTDC networks utilising optically-multiplexed current measurements and machine learning approach. Int. J. Electr. Power Energy Syst. 2018, 97, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Meghwani, A.; Chakrabarti, S.; Srivastava, S.C. An on-line fault location technique for DC microgrid using transient measurements. In Proceedings of the 2017 7th International Conference on Power Systems (ICPS), Pune, India, 21–23 December 2017; pp. 386–391. [Google Scholar] [CrossRef]
- Dhar, S.; Patnaik, R.K.; Dash, P.K. Fault Detection and Location of Photovoltaic Based DC Microgrid Using Differential Protection Strategy. IEEE Trans. Smart Grid 2018, 9, 4303–4312. [Google Scholar] [CrossRef]
- Meghwani, A.; Srivastava, S.C.; Chakrabarti, S. Local measurement-based technique for estimating fault location in multi-source DC microgrids. IET Gener. Transm. Distrib. 2018, 12, 3305–3313. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Jin, W.; Fu, Y.; Yang, H. Fault Location Method for DC Distribution Systems Based on Parameter Identification. Energies 2018, 11, 1983. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Lü, Y.; Zhao, C.; Liang, J. A Model-Based DC Fault Location Scheme for Multi-Terminal MMC-HVDC Systems Using a Simplified Transmission Line Representation. IEEE Trans. Power Deliv. 2020, 35, 386–395. [Google Scholar] [CrossRef]
- Yang, J.; Fletcher, J.E.; O’Reilly, J. Short-Circuit and Ground Fault Analyses and Location in VSC-Based DC Network Cables. IEEE Trans. Ind. Electron. 2012, 59, 3827–3837. [Google Scholar] [CrossRef] [Green Version]
- Javed, W.; Chen, D.; Farrag, M.E.; Xu, Y. System Configuration, Fault Detection, Location, Isolation and Restoration: A Review on LVDC Microgrid Protections. Energies 2019, 12, 1001. [Google Scholar] [CrossRef] [Green Version]
- Jamali, S.Z.; Bukhari, S.B.A.; Khan, M.O.; Mehdi, M.; Noh, C.H.; Gwon, G.H.; Kim, C.H. Protection Scheme of a Last Mile Active LVDC Distribution Network with Reclosing Option. Energies 2018, 11, 1093. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Monti, A.; Goldbeck, R.; De Doncker, R.W. Voltage Selection and Personal Safety in Low Voltage Direct Current Networks at Customer End. In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 21–25 October 2018; pp. 1–6. [Google Scholar]
- Mohammadi, J.; Badrkhani Ajaei, F.; Stevens, G. Grounding the DC Microgrid. IEEE Trans. Ind. Appl. 2019, 55, 4490–4499. [Google Scholar] [CrossRef]
- Salomonsson, D.; Soder, L.; Sannino, A. Protection of Low-Voltage DC Microgrids. IEEE Trans. Power Deliv. 2009, 24, 1045–1053. [Google Scholar] [CrossRef]
- Simon, D. The discrete-time Kalman filter. In Optimal State Estimation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; Chapter 5; pp. 121–148. [Google Scholar] [CrossRef]
- Ahmeid, M.; Armstrong, M.; Gadoue, S.; Al-Greer, M.; Missailidis, P. Real-Time Parameter Estimation of DC–DC Converters Using a Self-Tuned Kalman Filter. IEEE Trans. Power Electron. 2017, 32, 5666–5674. [Google Scholar] [CrossRef] [Green Version]
Component | Parameter | Value |
---|---|---|
boost converter | rated voltage (input/output) | 190 V DC/380 V DC |
rated power | 5 kW | |
switching frequency | 50 kHz | |
buck converter | rated voltage (input/output) | 380 V DC/190 V DC |
rated power | 5 kW | |
switching frequency | 50 kHz | |
DC cable | resistance per unit length | 8 /km |
inductance per unit length | mH/km | |
capacitance per unit length | F/km | |
length | km |
Parameter | Value |
---|---|
sampling step | 10 s |
fault type | PG and PP |
fault current injection | single-end and double-end |
fault location factor | , , , , |
fault resistance | , , 1 , 10 |
convergence threshold |
1 | 10 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(ms) | (ms) | (ms) | (ms) | |||||||||
10 | ||||||||||||
30 | ||||||||||||
50 | ||||||||||||
70 | ||||||||||||
90 |
1 | 10 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(ms) | (ms) | (ms) | (ms) | |||||||||
10 | ||||||||||||
30 | ||||||||||||
50 | ||||||||||||
70 | ||||||||||||
90 |
1 | 10 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(ms) | (ms) | (ms) | (ms) | |||||||||
10 | ||||||||||||
30 | ||||||||||||
50 | ||||||||||||
70 | ||||||||||||
90 |
1 | 10 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(ms) | (ms) | (ms) | (ms) | |||||||||
10 | ||||||||||||
30 | ||||||||||||
50 | ||||||||||||
70 | ||||||||||||
90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Liang, L.; Feng, X.; Ponci, F.; Monti, A. Online Parameter Estimation for Fault Identification in Multi-Terminal DC Distribution Grids. Energies 2021, 14, 5630. https://doi.org/10.3390/en14185630
Wang T, Liang L, Feng X, Ponci F, Monti A. Online Parameter Estimation for Fault Identification in Multi-Terminal DC Distribution Grids. Energies. 2021; 14(18):5630. https://doi.org/10.3390/en14185630
Chicago/Turabian StyleWang, Ting, Liliuyuan Liang, Xinrang Feng, Ferdinanda Ponci, and Antonello Monti. 2021. "Online Parameter Estimation for Fault Identification in Multi-Terminal DC Distribution Grids" Energies 14, no. 18: 5630. https://doi.org/10.3390/en14185630
APA StyleWang, T., Liang, L., Feng, X., Ponci, F., & Monti, A. (2021). Online Parameter Estimation for Fault Identification in Multi-Terminal DC Distribution Grids. Energies, 14(18), 5630. https://doi.org/10.3390/en14185630