Review of Zero Energy Building Concept-Definition and Developments in Latin America: A Framework Definition for Application in Panama
Abstract
:1. Introduction
- (a)
- Net zero energy building
- (b) Nearly zero energy building
1.1. Motivation and Objective
1.2. Scope and Structure
2. Implementation of nZEB and NZEB in Latin America
- To gather as many studies as possible, the use of scientific databases such as Scopus, Google Scholar, Science Direct, and Springer were selected.
- The search was performed in each of the scientific databases, applying the Boolean operators. The main co-word combinations were “nearly zero energy building,” “net zero energy building,” “nZEB,” AND “country” OR “NZEB”, in which the country represents each of the Latin American countries, with a total of 21.
- A complete review of the preselected articles in order to select those sources that provide information related to the ZEB framework, concepts, and Latin American studies.
- A full review of the title, abstract, keywords, and most relevant papers.
2.1. ZEB Type and Energy Saving Strategies According to Climate
2.2. Envelope Transmittance Values According to Climate
3. Methodology for nZEB Definition in Panama
- The system boundary of net delivered energy;
- Standard energy needs input data;
- Electricity consumption baseline to be used in energy calculations;
- Primary energy factors for energy carriers;
- Energy limits required to be supplied by local renewable sources.
3.1. The System Boundary of Net Delivered Energy
3.2. Standard Energy Needs Input Data
3.3. Electricity Consumption Baseline to Be Used in Energy Calculations
3.4. Primary Energy Factors for Energy Carriers
3.5. Estimated Energy Supplied by Local Renewable Sources
4. Case Study: A Theoretical Framework to Propose a nZEB Definition for Panama
4.1. Energy Base Line Values for Panama
- For cooling: 4920 kWh (82 kWh m−2 y−1);
- For lighting: 300 kWh (5 kWh m−2 y−1);
- For the refrigerator: 1260 kWh (21 kWh m−2 y−1);
- For appliances: 1620 kWh (27 kWh m−2 y−1), excluding the refrigerator;
- For cooking: 1020 kWh (17 kWh m−2 y−1).
4.2. Standard Dimension for Dwellings in Panama
4.3. A ZEB Definition for Panama
5. Discussion
6. Conclusions
- The ZEB concept has been applied in residential buildings far more often than for any other building type, successfully reaching the net-zero energy balance, even for different climates, which results in different amounts of energy being generated even with the same technology.
- Passive strategies have been mainly favored, outlying other strategies, where envelope characteristic’s enhancements are most often implemented, indicating that the ZEB concept has been concretely respected. In such cases, the envelope U-values tend to decrease, often reaching isolation-like levels.
- The U-values depend on the materials implemented, the discrepancies encountered between different climates and countries, or even the same climate type for the same country, contributing to the realization that a strong building performance energy regulation is lacking. However, the ZEB philosophy has been explored in LA with encouraging figures.
- For most Latin American countries, the applicability of the ZEB concept definition remains in a research project status, leading from slight to no considerations to energy policies establishments.
- Regarding the analyzed cases studied, the following highlights can be listed:
- The newest energy regulations implemented in Panama for minimum energy efficiency requirements for new buildings were evaluated by defining a system boundary to describe the net delivered energy for the residential sector.
- The installed power method was employed to estimate the generated energy by photovoltaic modules covering all the available roof surface areas.
- To establish the basis of the renewable threshold for a local nZEB definition in the residential sector, a theoretical framework for application in Panama was proposed and applied to the different cases studied.
- The results showed that the primary energy generated exceeded the primary energy consumption where the net primary energy balance lay in a range of 705 to 746 kWh m−2 y−1 for the cases studied. This demonstrates that the potential of available renewable energy technology can help to accomplish net zero energy buildings and that grasping plus energy buildings is possible.
- A SWOT analysis is presented to evaluate the potential of mainly introducing the nZEB concept and the proposed framework in Panama.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AEE | Annualized embodied energy |
BIPV | Building integrated photovoltaics |
COP | Coefficient of performance |
GHG | Greenhouse gas |
LA | Latin American |
LC-ZEB | Life cycle zero energy building |
nZEB | Nearly zero energy building |
NZEB | Neat zero energy building |
PEB | Plus energy building |
PCM | Phase change materials |
PV | Photovoltaic |
SWOT | Strengths, Weaknesses, Opportunities and Threats |
U-value | Transmittance values |
ZEB | Zero energy building |
References
- Attia, S. Net Zero Energy Buildings (NZEB): Concepts, Frameworks and Roadmap for Project Analysis and Implementation; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-812461-1. [Google Scholar]
- Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32010L0031 (accessed on 10 May 2020).
- D’Agostino, D.; Zangheri, P. Development of the NZEBs Concept in Member States, p. 47. Available online: https://ec.europa.eu/jrc (accessed on 10 May 2020).
- Ecofys Germany GmbH; Danish Building Research Institute (SBi). Principles for Nearly Zero-Energy Buildings. Paving the Way for Effective Implementation of Policy Requirements. November 2011. Available online: https://www.bpie.eu/publication/principles-for-nearly-zero-energy-buildings/ (accessed on 10 May 2020).
- Ecofys: Andreas Hermelink, Sven Schimschar, Thomas Boermans Politecnico di Milano/eERG: Lorenzo Pagliano, Paolo Zangheri, Roberto Armani University of Wuppertal: Karsten Voss, Eike Musall. Towards Nearly Zero Energy Buildings Definition of Common Principles under the EPBD. 14 February 2013. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/nzeb_full_report.pdf (accessed on 4 June 2020).
- Voss, K.; Sartori, I.; Napolitano, A.; Geier, S.; Gonçalves, H.; Hall, M.; Heiselberg, P.; Widén, J.; Candanedo, J.A.; Musall, E.; et al. Load Matching and Grid Interaction of Net Zero Energy Buildings. In Proceedings of the EuroSun 2010 Conference, Graz, Austria, 28 September–1 October 2010; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sartori, I.; Napolitano, A.; Marszal, A.; Pless, S.; Torcellini, P.; Voss, K. Criteria for Definition of Net Zero Energy Buildings. In Proceedings of the EuroSun 2010 Conference, Graz, Austria, 28 September–1 October 2010; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Marszal, A.J.; Heiselberg, P.; Bourrelle, J.S.; Musall, E.; Voss, K.; Sartori, I.; Napolitano, A. Zero Energy Building—A review of definitions and calculation methodologies. Energy Build. 2011, 43, 971–979. [Google Scholar] [CrossRef]
- Attia, S.; Eleftheriou, P.; Xeni, F.; Morlot, R.; Ménézo, C.; Kostopoulos, V.; Betsi, M.; Kalaitzoglou, I.; Pagliano, L.; Cellura, M.; et al. Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy Build. 2017, 155, 439–458. [Google Scholar] [CrossRef]
- Gaglia, A.G.; Tsikaloudaki, A.G.; Laskos, C.M.; Dialynas, E.N.; Argiriou, A.A. The impact of the energy performance regulations’ updated on the construction technology, economics and energy aspects of new residential buildings: The case of Greece. Energy Build. 2017, 155, 225–237. [Google Scholar] [CrossRef]
- Monzón-Chavarrías, M.; López-Mesa, B.; Resende, J.; Corvacho, H. The nZEB concept and its requirements for residential buildings renovation in Southern Europe: The case of multi-family buildings from 1961 to 1980 in Portugal and Spain. J. Build. Eng. 2021, 34, 101918. [Google Scholar] [CrossRef]
- López-Ochoa, L.M.; Las-Heras-Casas, J.; Olasolo-Alonso, P.; López-González, L.M. Towards nearly zero-energy buildings in Mediterranean countries: Fifteen years of implementing the Energy Performance of Buildings Directive in Spain (2006–2020). J. Build. Eng. 2021, 44, 102962. [Google Scholar] [CrossRef]
- Fokaides, P.A.; Polycarpou, K.; Kalogirou, S. The impact of the implementation of the European Energy Performance of Buildings Directive on the European building stock: The case of the Cyprus Land Development Corporation. Energy Policy 2017, 111, 1–8. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, Q.; Ji, H.; Wang, R.; Zhou, N.; Ye, Q.; Hao, B.; Li, Y.; Luo, D.; Lau, S.S.Y. A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings. Renew. Sustain. Energy Rev. 2019, 114, 109303. [Google Scholar] [CrossRef]
- Lan, L.; Wood, K.L.; Yuen, C. A holistic design approach for residential net-zero energy buildings: A case study in Singapore. Sustain. Cities Soc. 2019, 50, 101672. [Google Scholar] [CrossRef]
- Gholami, H.; Røstvik, H.N.; Müller-Eie, D. Holistic economic analysis of building integrated photovoltaics (BIPV) system: Case studies evaluation. Energy Build. 2019, 203, 109461. [Google Scholar] [CrossRef]
- Li, X.; Lin, A.; Young, C.-H.; Dai, Y.; Wang, C.-H. Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building. Appl. Energy 2019, 254, 113709. [Google Scholar] [CrossRef]
- De Silva, M.N.K.; Sandanayake, Y.G. Building Energy Consumption Factors: A Literature Review and Future Research Agenda. 2012. Available online: https://www.irbnet.de/daten/iconda/CIB_DC25108.pdf (accessed on 6 September 2020).
- Carpino, C.; Mora, D.; Arcuri, N.; De Simone, M. Behavioral variables and occupancy patterns in the design and modeling of Nearly Zero Energy Buildings. Build. Simul. 2017, 22, 875–888. [Google Scholar] [CrossRef]
- Pless, S.; Torcellini, P. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options; NREL/TP-550-44586; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010; p. 983417. [CrossRef] [Green Version]
- Torcellini, P.; Pless, S.; Deru, M. Zero Energy Buildings: A Critical Look at the Definition; Preprint. Available online: https://www.eceee.org/library/conference_proceedings/ACEEE_buildings/2006/Panel_3/p3_24/ (accessed on 10 July 2020).
- Kurnitski, J. How to Define Nearly Net Zero Energy Buildings nZEB. Available online: https://www.rehva.eu/fileadmin/hvac-dictio/03-2011/How_to_define_nearly_net_zero_energy_buildings_nZEB.pdf (accessed on 10 July 2020).
- Hernandez, P.; Kenny, P. From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB). Energy Build. 2010, 42, 815–821. [Google Scholar] [CrossRef]
- Hoque, S. Net Zero Energy Homes: An Evaluation of Two Homes in the Northeastern United States. J. Green Build. 2010, 5, 79–90. [Google Scholar] [CrossRef]
- Asadi, S.; Nazari-Heris, M.; Nasab, S.R.; Torabi, H.; Sharifironizi, M. An updated review on net-zero energy and water buildings: Design and operation. In Food-Energy-Water Nexus Resilience and Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2020; pp. 267–290. [Google Scholar] [CrossRef]
- D’Agostino, D.; Mazzarella, L. What is a Nearly zero energy building? Overview, implementation and comparison of definitions. J. Build. Eng. 2019, 21, 200–212. [Google Scholar] [CrossRef]
- Williams, J.; Mitchell, R.; Raicic, V.; Vellei, M.; Mustard, G.; Wismayer, A.; Yin, X.; Davey, S.; Shakil, M.; Yang, Y.; et al. Less is more: A review of low energy standards and the urgent need for an international universal zero energy standard. J. Build. Eng. 2016, 6, 65–74. [Google Scholar] [CrossRef] [Green Version]
- WORLDBAL_Documentation.pdf All Rights Reserved. Available online: https://iea.blob.core.windows.net/assets/fffa1b7d-b0c5-4e64-86aa-5c9421832d73/WORLDBAL_Documentation.pdf (accessed on 8 May 2020).
- Energy Use (kg of Oil Equivalent per Capita)–Latin America & Caribbean, Argentina, Bolivia, Brazil, Chile, Colombia|Data. Available online: https://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE?end=2014&locations=ZJ-AR-BO-BR-CL-CO&start=2014&view=bar (accessed on 8 May 2020).
- Reus-Netto, G.; Mercader-Moyano, P.; Czajkowski, J.D. Methodological Approach for the Development of a Simplified Residential Building Energy Estimation in Temperate Climate. Sustainability 2019, 11, 4040. [Google Scholar] [CrossRef] [Green Version]
- Layke, J.; Mackres, E.; Liu, S.; Aden, N.; Becqué, R. Accelerating Building Efficiency: Eight Actions for Urban Leaders. 2016. Available online: https://www.wri.org/research/accelerating-building-efficiency (accessed on 24 May 2021).
- Harkouss, F. Optimal Design of Net Zero Energy Buildings under Different Climates. 2018. Available online: https://tel.archives-ouvertes.fr/tel-01891916 (accessed on 11 July 2020).
- Transparency, C. The G20 Transition Towards a Net-Zero Emissions Economy. Argentina. 2019. Available online: https://www.climate-transparency.org/wp-content/uploads/2019/11/B2G_2019_Argentina.pdf (accessed on 15 June 2020).
- Daniel, J.; Fernanda, A. Edificio de Oficinas de Baja Energía en Llavallol, Buenos Aires. Una Experiencia Universidad—Empresa. 2015. Available online: https://idus.us.es/bitstream/handle/11441/48621/56.pdf?sequence=1 (accessed on 15 June 2020).
- Camporeale, P.E.; Mercader-Moyano, P. Towards nearly Zero Energy Buildings: Shape optimization of typical housing typologies in Ibero-American temperate climate cities from a holistic perspective. Sol. Energy 2019, 193, 738–765. [Google Scholar] [CrossRef]
- Arballo, B.; Kuchen, E.; Frank, A.; Alamino, Y. Estrategias de Ocupación, Operación y Gestión de Energía Casi Nula para el Edificio de Rectorado UNSJ, San Juan, Argentina. Construible, 2016. Available online: https://www.construible.es/comunicaciones/estrategias-ocupacion-operacion-gestion-energia-casi-nula-edificio-rectorado-unsj-san-juan-argentina (accessed on 15 April 2020).
- Transparency, C. The G20 Transition Towards a Net-Zero Emissions Economy. Brazil. 2019. Available online: https://www.climate-transparency.org/wp-content/uploads/2019/11/B2G_2019_Brazil.pdf (accessed on 15 June 2020).
- Didone, E.L. Parametric Study for Net Zero Energy Building Strategies in Brazil Considering Semi-Transparent PV Windows. Ph.D. Thesis, Department of Architecture-Karlsruhe Institute of Technology, Karlsruhe, Germany, 2014. [Google Scholar] [CrossRef]
- Domingos, R.M.A.; Gabriel, E.; Guarda, E.L.A.; Pereira, F.O.R. Assessment of technical-financial analysis of a zero energy building for Brazilian hot and temperate tropical climate. IOP Conf. Ser. Mater. Sci. Eng. 2019, 609, 072013. [Google Scholar] [CrossRef] [Green Version]
- Piderit, M.B.; Vivanco, F.; Van Moeseke, G.; Attia, S. Net Zero Buildings—A Framework for an Integrated Policy in Chile. Sustainability 2019, 11, 1494. [Google Scholar] [CrossRef] [Green Version]
- Besser, D.; Vogdt, F.U. First steps towards low energy buildings: How far are Chilean dwellings from nearly zero-energy performances? Energy Procedia 2017, 132, 81–86. [Google Scholar] [CrossRef]
- Pinto, G.A.O.; Nova, D.A.S.; Calderón, N.C.B.; OrdonezPlata, G. Energy considerations of social dwellings in Colombia accotding to NZEB concept. DYNA 2015, 82, 120–130. [Google Scholar] [CrossRef]
- Tewari, R. Net-Zero Energy Housing Virtual Article 6 Pilot. 2020. Available online: https://newclimate.org/2020/01/29/net-zero-energy-housing-virtual-article-6-pilot-net-zero-energy-buildings-in-cartagena-colombia/ (accessed on 11 July 2020).
- Collado, N.; Himpe, E.; González, D.; Rueda, L. Retos para una Definición de ‘Edificios de Consumo Energético casi Nulo’. Challenges for a Definition of Nearly Zero Energy Buildings. Rev. Ing. Constr. 2019, 34, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Baldoquin, N.C.; Guzman, L.A.R.; Couret, D.G.; Janssens, A. Teaching about Nearly Zero Energy Buildings in the Architecture Curriculum in Havana, Cuba. 2018. Available online: https://biblio.ugent.be/publication/8589635 (accessed on 11 July 2020).
- Baldoquin, N.C.; Guzmán, L.A.R.; Couret, D.G. Hoteles de Consumo Energético Casi Nulo. Potencialidades y Restricciones para Cuba. 2018. Available online: https://www.researchgate.net/publication/330542847_HOTELES_DE_CONSUMO_ENERGETICO_CASI_NULO_POTENCIALIDADES_Y_RESTRICCIONES_PARA_CUBA (accessed on 12 July 2020).
- Ordoñez, E.; Mora, E.; Gaudry, K. Roadmap Toward NZEBs in Quito. IOP Conf. Ser. Mater. Sci. Eng. 2019, 609, 072040. [Google Scholar] [CrossRef]
- Montalvo, M.E.B. Estudio de Factibilidad Económico y Financiera Utilizando Tecnología Net Zero Energy para un Proyecto de Vivienda Familiar de Clase Media Urbana en la Ciudad de Quito. 2016. Available online: http://bibdigital.epn.edu.ec/handle/15000/15285 (accessed on 12 July 2020).
- Pérez Pérez, M.; Márquez Pérez, L.A. Ecoinvolúcrate, la Estrategia de Ecuador para la Construcción de Edificios de Energía Casi Nula. Construible, 2016. Available online: https://www.construible.es/comunicaciones/ecoinvolucrate-estrategia-ecuador-construccion-edificios-energia-casi-nula (accessed on 14 April 2020).
- NZEB-El Salvador: El Edificio de Cero Energía Neta de US$400.000. Revista Construir, 5 March 2020. Available online: https://revistaconstruir.com/nzeb-el-salvador-el-edificio-de-cero-energia-neta-de-us400-000/ (accessed on 16 April 2020).
- Guenther, R.; Vittori, G. Sustainable Healthcare Architecture; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-08682-7. [Google Scholar]
- Transparency, C. The G20 Transition Towards a Net-Zero Emissions Economy. Mexico. 2019. Available online: https://www.climate-transparency.org/wp-content/uploads/2019/11/B2G_2019_Mexico.pdf (accessed on 15 June 2020).
- México, E. Edificios Certificados con Energía Cero. 2018. Available online: https://www.revistaequipar.com/mexico/contenido-editorial/edificios-certificados-con-energia-cero (accessed on 21 April 2020).
- Hoque, S.; Iqbal, N. Building to Net Zero in the Developing World. Buildings 2015, 5, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Mora, D.; Araúz, J.; Austin, M.C. Towards Nearly Zero Energy Buildings in Panama through Low-Consumption Techniques: A Numerical Study. In Proceedings of the 74th ATI National Congress Italie-AIP Conference Proceddings, Modena, Italy, 11–13 September 2019; p. 020114. [Google Scholar] [CrossRef]
- Proposals—APEC Nearly (Net) Zero Energy Building Roadmap. 2016. Available online: https://aimp2.apec.org/sites/PDB/Lists/Proposals/DispForm.aspx?ID=1942 (accessed on 21 April 2020).
- BSUsolar. Proyecto Destacado—Residencia Nzeb en Uruguay. 2019. Available online: https://5b00fd61-12f8-440c-80b9-098f6e1bc274.filesusr.com/ugd/a1167a_d3e9d85fdcc048c0a9a95fc08f1cced9.pdf (accessed on 16 June 2020).
- Rüther, R.; Urbanetz, J.; Zomer, C. On the Compromises between Form and Function in Grid-Connected Building-Integrated Photovoltaics (BIPV) at Low-Latitude Sites. International Solar Energy Society, 2011. Available online: http://proceedings.ises.org/citation?doi=swc.2011.17.32 (accessed on 17 June 2020).
- Gaceta Oficial, Resolución N°3142, 17 November 2016. 2016. Available online: https://www.gacetaoficial.gob.pa/pdfTemp/28165/GacetaNo_28165_20161124.pdf (accessed on 20 July 2020).
- SNE, P. Secretaría Nacional de Energía de Panama. 2020. Available online: http://www.naturgy.com.pa/pa/conocenos/la+compania/1297100717349/regulacion+del+mercado+energetico+en+panama.html (accessed on 6 September 2021).
- Plan Energético Nacional de Panama. 2016, p. 343. Available online: https://www.senacyt.gob.pa/wp-content/uploads/2018/12/3.-Plan-Energetico-Nacional-2015-2050-1.pdf (accessed on 6 September 2021).
- Gaceta Oficial No. 28434-A, por la Cual se Aprueba el Reglamento Tecnico DGNTI-COPANIT. Ministerio de Comercio e Industrias, 2017. Available online: https://www.gacetaoficial.gob.pa/pdfTemp/28434_A/GacetaNo_28434a_20171228.pdf (accessed on 24 May 2021).
- Comisión Económica para América Latina y el Caribe (CEPAL). Informe Nacional de Monitoreo de la Eficiencia Energética de Panamá, 2020. Available online: https://www.cepal.org/es/publicaciones/46536-informe-nacional-monitoreo-la-eficiencia-energetica-panama-2020 (accessed on 6 September 2020).
- Gaceta Oficial, Resolución N°3980, 8 Octubre 2018. 2018. Available online: http://www.energia.gob.pa/?mdocs-file=2028 (accessed on 22 August 2021).
- Gaceta Oficial, Resolución de la JTIA N°035, 26 de Junio 2019. 2019. Available online: https://www.gacetaoficial.gob.pa/pdfTemp/28820/GacetaNo_28820_20190718.pdf (accessed on 20 June 2020).
- A Common Definition for Zero Energy Buildings. Available online: https://www.energy.gov/sites/prod/files/2015/09/f26/A%20Common%20Definition%20for%20Zero%20Energy%20Buildings_0.pdf (accessed on 13 July 2020).
- Best Solar Panels in 2020 [Complete List]|EnergySage. Solar News, 13 September 2016. Available online: https://news.energysage.com/best-solar-panels-complete-ranking/ (accessed on 8 September 2020).
- SunPower. A-Series Solar Panels. SunPower—United States. 27 February 2019. Available online: https://us.sunpower.com/solar-panels-technology/a-series-solar-panels (accessed on 22 August 2021).
- PVWatts Calculator. Available online: https://pvwatts.nrel.gov/pvwatts.php (accessed on 8 September 2020).
- Heinze, M.; Voss, K. Goal: Zero Energy Building Exemplary Experience Based on the Solar Estate Solarsiedlung Freiburg am Schlierberg, Germany. J. Green Build. 2009, 4, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Labastid, D.; Bolobosky, M.; Mogollón, L.; James, A. Implementación de un Intercambiador de Calor en Techos de Zinc. KnE Eng. 2018, 3, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Araque, K.; Palacios, P.; Mora, D.; Austin, M.C. Biomimicry-Based Strategies for Urban Heat Island Mitigation: A Numerical Case Study under Tropical Climate. Biomimetics 2021, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Díaz, J.A.; Caballero, A.; Chambers, H. Evaluación de sistemas de ventilación utilizando la radiación solar. I+D Tecnol. 2015, 11, pp. 35–40. Available online: https://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/17 (accessed on 14 April 2020).
- Austin, M.C.; Castillo, M.; Silva, Á.D.M.D.; Mora, D. Numerical Assessment of Bioclimatic Architecture Strategies for Buildings Design in Tropical Climates: A Case of Study in Panama. E3S Web Conf. 2020, 197, 02006. [Google Scholar] [CrossRef]
- Quintana, E.; Díaz, R. Simulación de un Sistema de Acondicionamiento de Aire por Absorción Con Asistencia Solar en Panamá Utilizando TRNSYS. I+D Tecnol. 2013, 9, 2. Available online: https://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/83 (accessed on 27 August 2021).
- Austin, M.C.; Garzola, D.; Delgado, N.; Jiménez, J.U.; Mora, D. Inspection of Biomimicry Approaches as an Alternative to Address Climate-Related Energy Building Challenges: A Framework for Application in Panama. Biomimetics 2020, 5, 40. [Google Scholar] [CrossRef]
- D’Agostino, D.; Zangheri, P.; Castellazzi, L. Towards Nearly Zero Energy Buildings in Europe: A Focus on Retrofit in Non-Residential Buildings. Energies 2017, 10, 117. [Google Scholar] [CrossRef]
- Austin, M.C.; Boya, C.; Mora, D.Y. Improving building energy performance by addressing today’s demand-side challenges: A review of contributions from Latin America. Novasinergia 2020, 3, 2. [Google Scholar] [CrossRef]
- Energy Efficiency in Chilean School Buildings: A Nzeb Aproach. Available online: http://civil.uminho.pt/urbenere/wp-content/uploads/2018/05/E9.pdf (accessed on 14 July 2020).
- Attia, S.; Piderit, B.; Van Moeseke, G. Resilience & Net-Zero Energy Buildings in Chile. 2018. Available online: https://www.researchgate.net/publication/327437686_Resilience_and_Net-Zero_Energy_Buildings_in_Chile (accessed on 20 June 2020).
- Zhang, L.; Guo, S.; Wu, Z.; Alsaedi, A.; Hayat, T. SWOT Analysis for the Promotion of Energy Efficiency in Rural Buildings: A Case Study of China. Energies 2018, 11, 851. [Google Scholar] [CrossRef] [Green Version]
- Markovska, N.; Taseska, V.; Pop-Jordanov, J. SWOT analyses of the national energy sector for sustainable energy development. Energy 2009, 34, 752–756. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, S.; Xu, P.; Zhuang, T. An ANP-SWOT approach for ESCOs industry strategies in Chinese building sectors. Renew. Sustain. Energy Rev. 2018, 93, 90–99. [Google Scholar] [CrossRef]
- Resende, J.; Monzón-Chavarrías, M.; Corvacho, H. The applicability of nearly/net zero energy residential buildings in Brazil—A study of a low standard dwelling in three different Brazilian climate zones. Indoor Built Environ. 2020, 1–21. [Google Scholar] [CrossRef]
- Costa, J.F.W.; Amorim, C.N.D.; Silva, J.C.R. Retrofit guidelines towards the achievement of net zero energy buildings for office buildings in Brasilia. J. Build. Eng. 2020, 32, 101680. [Google Scholar] [CrossRef]
Country | Climate Type (City) | ZEB Type | Energy Consumption Limits (U Conventional) | Energy Consumption Limits (U Improved) | Type of Project (Status) | Type of Building or Building Sector | Energy Saving Strategies | Building Area (PV Area) m2 | Ref | |
---|---|---|---|---|---|---|---|---|---|---|
1 | Argentina | Not Specified | NZEB | Not Specified | Not Specified | policies | Not Specified | Not Specified | Not Specified | [33] |
Cfa (Llavallol) | 321.4 heating kWh m−2 y−1 | 72.7 heating kWh m−2 y−1 | Research (Preliminary study) | Commercial Office | Passive Active | 750–900 | [34] | |||
Cfa (Resistencia) | nZEB | Depending on the case | Not Specified | Residential | Passive | 12,000 | [35] | |||
Cfa (Buenos Aires) | ||||||||||
BwK (San Juan) | 438,856 kWh y−1 | 87,771 kWh y−1 | Educational | Passive Active | (387) | [36] | ||||
2 | Brazil | Not Specified | NZEB | Not Specified | - | Policies | Not Specified | Not Specified | - | [37] |
Cfa (Florianopolis) | Depending on the case | Depending on the case | Research (Preliminary study) | Office | Active | 360–25,500 | [38] | |||
As (Fortalelza) | ||||||||||
Af (Curitiba) | Not Specified | 23% less | Residential | Passive | 60 (17) | [39] | ||||
Cfb (El Salvador) | 42% less | 60 (17) | ||||||||
3 | Chile | Csb (Santiago) | Not Specified | 15–45 kWh m−2 y−1 | Research (Preliminary Study/ finished) | Residential | Passive | Not Specified | [40] | |
BWk (Antofagasta) | nZEB | Depending on the case | Depending on the case | Research (Preliminary Study) | Residential | Passive Active | 50 106 1614 | [41] | ||
Csb (Santiago) | ||||||||||
Csb (Concepción) | ||||||||||
ET (Punta Arenas) | ||||||||||
4 | Colombia | Not Specified | NZEB | Depending on the case | Not Specified | Research (Preliminary Study) | Residential (social dwelling) | Passive | Not Specified | [42] |
Aw (Cartagena) | 3393 | 1901 | Residential | Passive Active | 3334 | [43] | ||||
5 | Cuba | Not Specified | nZEB | Not Specified | Not Specified | Research (Preliminary Study/finished/ Preliminary Study) | Hotels | Not Specified | Not Specified | [44] |
Not Specified | 30–40% LESS | Hotels | Passive | Not Specified | [45] | |||||
Aw (La Habana) | 230 kWh m−2 y−1 | Not Specified | Hotels | Passive | Not Specified | [46] | ||||
6 | Ecuador | Cfb (Quito | NZEB | 7126–178,545 kWh y−1 | 3377–176,825 kWh y−1 | Research (Preliminary Study) | Residential | Passive | 49.77–6300 | [47] |
Cfb (Quito) | 28,625 kWh y−1 | Not Specified | Academic (Preliminary Study) | Residential | Not Specified | 600 (284.52) | [48] | |||
Not Specified | nZEB | Not Specified | Not Specified | Research (In progress) | Not Specified | Not Specified | Not Specified | [49] | ||
7 | El Salvador | Aw (San Salvador) | NZEB | Not Specified | Not Specified | Project (finished) | Laboratory | Active | Not Specified | [50] |
8 | Haiti | Aw (Mirebalais) | Not Specified | Not Specified | Research (finished) | Hospital | Passive | 17,187 | [51] | |
9 | México | Not Specified | Not Specified | Not Specified | Policies (finished) | Not Specified | Not Specified | Not Specified | [52] | |
Gathered Consortium project (finished) | Residential Office commercial | Not Specified | 20,000 | [53] | ||||||
10 | Panama | Af (Los Santos) | Not Specified | 0.72 kWh m−2 y−1 | Research (finished/ Preliminary study) | Residential | Passive | 213 | [54] | |
Aw (Ciudad de Panama) | nZEB | 516.64 | Depending on the case | University | Passive | 218 | [55] | |||
11 | Peru | Not Specified | Not Specified | Not Specified | Project (finished) | Residential office Commercial schools, hospitals, | Not Specified | Not Specified | [56] | |
12 | Uruguay | Cfa | Not Specified | 17–19 kWh m−2 y−1 | Project (finished) | Residential | Not Specified | 280 | [57] |
Country | Climate Type (City) | ZEB Type | Energy Generation | Passive Design Features | Other Active Design Features | Ref | |
---|---|---|---|---|---|---|---|
1 | Cuba | Not Specified | nZEB | Not specified | Natural ventilation | Lightning | [44] |
Solar thermal, photovoltaic systems. Small wind turbines | [45] | ||||||
Aw (La Habana) | Save 40% (92 kWh m−2 y−1)PV | [46] | |||||
2 | Ecuador | Cfb (Quito) | NZEB | 11,427–138,053 kWh y−1 | Passive solar, thermal insulation according to the climate, and high compactness | Reduced needs for heating and cooling | [47] |
Cfb (Quito) | PV | - | - | [48] | |||
Not Specified | nZEB | Not specified | - | - | [49] | ||
3 | El Salvador | Aw (San Salvador) | NZEB | PV | - | Lightning control | [50] |
4 | Haiti | Aw (Mirebalais) | PV | Light colored walls promote natural ventilation, and reflect solar radiation | Operable windows | [51] | |
5 | México | Not Specified | Not specified | - | - | [52] | |
- | - | [53] | |||||
6 | Peru | Not Specified | Not specified | - | - | [54] | |
7 | Uruguay | Cfa | PV | - | - | [57] |
Country | Climate Type (City) | ZEB Type | U (W m−2 K−1) Conventional or Original | U (W m−2 K−1) Improved | Energy Generation | Passive Design Features | Other Active Design Features | Ref | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ceiling | Walls | Doors | Window | Floor | Ceiling | Walls | Doors | Window | Floor | ||||||||
1 | Argentina | Cfa (Llavallol) | NZEB | 1–7 | 1–3 | 1–7 | 3–6 | 2–3 | 0.12 | 0.12 | 1.86 | 0.8 | 0.5 | PV and Thermal | Advance envelope | Rainfall water recovery | [34] |
Cfa (Resistencia) | nZEB | 0.45–0.83 | 1–1.10 | - | <4 | - | - | - | - | - | - | 182 kWh m−2 y−1 | Optimized shape, natural ventilation | [35] | |||
Cfa (Buenos Aires) | 0.45–0.83 | 1–1.10 | - | <4 | - | - | - | - | - | - | 173 kWh m−2 y−1 | ||||||
BwK (San Juan) | - | - | - | - | - | - | - | - | - | - | PV 91,400 kWh y−1 | Solar shading, advance envelope, natural ventilation, occupant behavior | Advanced lighting controls, load management, | [36] | |||
2 | Brazil | Cfa (Florianopolis) | NZEB | 2.42 | 2.47 | - | 5.82 | - | 0.25 | 3.1 | - | 1.67–1.68 | - | PV | - | Window systems | [38] |
As (Fortalelza) | 2.42 | 2.47 | - | 5.82 | - | 0.25 | 0.39 | - | 1.67–1.68 | - | |||||||
Af (Curitiba) | - | - | - | - | - | 3.74 | 0.96 | - | - | - | BIPV | Advance envelope, optimized shape, and orientation | - | [39] | |||
Cfb (El Salvador) | - | - | - | - | - | 3.74 | 3.19 | - | - | - | - | ||||||
3 | Chile | Csb (Santiago) | - | - | - | - | - | - | - | - | - | - | No specified | - | - | [40] | |
BWk (Antofagasta) | nZEB | 0.84 | 4 | 3.35 | 5.8 | - | 0.84 | 2.1 | 3.35 | 5.8–0.75 | - | Depending on the case | Envelope modifications | Mechanical Ventilation for air quality | [41] | ||
Csb (Santiago) | 0.47 | 1.99 | 3.35 | 2.8 | - | 0.38 | 0.6 | 1.20 | 2.8–0.67 | - | |||||||
Csb (Concepción) | 0.38 | 1.7 | 3.35 | 2.8 | 0.33 | 0.5 | 1 | 2.8 | - | ||||||||
ET (Punta Arenas) | 0.25 | 0.6 | 3.35 | 1.8 | 0.25 | 0.35 | 0.80 | 1.8 | - | ||||||||
4 | Colombia | Not Specified | NZEB | - | - | - | - | - | - | - | - | - | - | Wind and PV | Strategic orientation, natural ventilation | Energy efficient of systems | [42] |
Aw (Cartagena) | 3.868 | 4.576 | - | 5.85–5.91 | - | - | 0.22 | - | 1.94 | - | PV | Building orientation, wall insulation, air tightness, window efficiency, and ventilation | Shading system, Humidity control, lightning, and air conditioner | [43] | |||
5 | Panama | Af (Los Santos) | - | - | - | - | - | 0.25 | 0.15 | - | 1.4 | 0.3 | PV | Passive cooling, ventilation | Daylighting control | [44] | |
Aw (Ciudad de Panama) | nZEB | 0.25 | 3.86 | - | 0.49 | 0.25 | 0.25/ 0.25 | 0.15/ 0.36 | - | 1.40/ 0.49 | 0.25/ 0.23 | Not specified | Passive cooling, envelope modifications, occupant behavior, and building orientation | [55] |
Building Type | Base Line (kWh m−2 y−1) | 15% Saving (kWh m−2 y−1) |
---|---|---|
Dwelling | 80 | 68 |
Office | 202 | 172 |
Hotel | 172 | 146 |
Commercial | 290 | 246 |
Health | 376 | 320 |
Education | 100 | 85 |
Residential | Office | Health-Education | Commercial (>50,000 m2) | |
---|---|---|---|---|
U-Wall (W m−2 K−1) | 0.8–4 | 1–3 | 2–4 | 1–2 |
U-window (W m−2 K−1) | 5.25–5.8 | 5.25–5.75 | 5.25–5.8 | 5–5.8 |
g Window (-) | 0.35–0.87 | 0.35–0.5 | 0.35–0.6 | 0.48–0.87 |
WWR (%) | 30–40 | 75–100 | 30–50 | 20–100 |
U-Roof (W m−2 K−1) | 0.50–4.80 | 1.04–4.80 | 1.50–4.80 | 1–2.70 |
Air conditioner COP (-) | 3–3.10 | 3–3.20 | 2.90–3.30 | 3.40–3.70 |
A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | |
---|---|---|---|---|---|---|---|---|---|---|
Dwelling Area (m2) | Grid * | Energy Consumption * | Energy Consumption Total * | Primary Energy * | Generated Energy * | Primary Energy Generated * | Net Primary Energy * | Exported Energy Electricity * | Exported Primary Energy * | |
Cooking | Electricity | |||||||||
60 | 21 | 36 | 80 | 116 | 290 | 316 | 996 | −705 | 257 | 809 |
80 | 21 | 27 | 80 | 107 | 281 | 319 | 1004 | −723 | 260 | 818 |
100 | 21 | 22 | 80 | 102 | 275 | 320 | 1009 | −734 | 261 | 823 |
120 | 21 | 18 | 80 | 98 | 271 | 321 | 1013 | −742 | 262 | 826 |
150 | 21 | 15 | 80 | 95 | 267 | 323 | 1016 | −749 | 263 | 830 |
200 (100 m2/storey) | 21 | 11 | 80 | 91 | 263 | 320 | 1009 | −746 | 261 | 823 |
Strengths | Opportunities |
---|---|
| O1: Accelerate, to achieve national goals to increase the renewal integration in the building sector. O2: Develop adaptive comfort model for residential buildings in Panama. O3: Transforming the built environment, by demonstrating NZEB as a pilot project or show cases for energy neutral buildings. O4: Research innovations due to lack technological and industrial infrastructure, and knowledge competency. O5: Policy support. O6: Energy and climate change linkage. O7: Enhancement of human capability. |
Weakness | Threats |
| T1: Not embracing facility management to maintain the quality and operation of NZEB. T2: Failing to build consensus among educator, children, families, government, and local authorities. T3: Lack of policies and standards. T4: Unreasonable energy structure. T5: Shortage of energy at regional level could cause high electricity costs to maintain income balance in energy sector. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen Austin, M.; Chung-Camargo, K.; Mora, D. Review of Zero Energy Building Concept-Definition and Developments in Latin America: A Framework Definition for Application in Panama. Energies 2021, 14, 5647. https://doi.org/10.3390/en14185647
Chen Austin M, Chung-Camargo K, Mora D. Review of Zero Energy Building Concept-Definition and Developments in Latin America: A Framework Definition for Application in Panama. Energies. 2021; 14(18):5647. https://doi.org/10.3390/en14185647
Chicago/Turabian StyleChen Austin, Miguel, Katherine Chung-Camargo, and Dafni Mora. 2021. "Review of Zero Energy Building Concept-Definition and Developments in Latin America: A Framework Definition for Application in Panama" Energies 14, no. 18: 5647. https://doi.org/10.3390/en14185647
APA StyleChen Austin, M., Chung-Camargo, K., & Mora, D. (2021). Review of Zero Energy Building Concept-Definition and Developments in Latin America: A Framework Definition for Application in Panama. Energies, 14(18), 5647. https://doi.org/10.3390/en14185647