Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review
Abstract
:1. Introduction
2. Application of Mechanical Alloying in Mg-Based Hydrogen Storage Alloys
3. Ti-Based Hydrogen Storage Alloys
4. RE-Based Hydrogen Storage Alloys
4.1. Type Hydrogen Storage Alloy
4.2. and Hydrogen Storage Alloy
5. Body-Centered Cubic (BCC) Alloys
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
H | Hydrogen |
LOHCs | Liquid Organic Hydrogen Carriers |
NiMH | Nickel Metal Hydride |
RE | Rare Earth |
Mg | Magnesium |
HPT | High Pressure Torsion |
GR | Roll Groove |
HER | Hydrogen Evolution Reaction |
DFT | Density Function Theory |
SWCNT | Single Wall Carbon Nanotube |
MWCNT | Multiwall Carbon Nanotube |
ETM | Early Transition Metal |
MH | Metal Hydride |
MA | Mechanical Alloying |
BCC | Body Centered Cubic |
References
- Shafiee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy Policy 2009, 37, 181–189. [Google Scholar] [CrossRef]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Park, G.; Jang, H.; Kim, C. Design of composite layer and liner for structure safety of hydrogen pressure vessel (type 4). J. Mech. Sci. Technol. 2021, 1–11. [Google Scholar] [CrossRef]
- Züttel, A. Hydrogen storage methods. Naturwissenschaften 2004, 91, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, Y.; Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 2012, 5, 9698–9725. [Google Scholar] [CrossRef]
- Rusman, N.A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Gasiorowski, A.; Iwasieczko, W.; Skoryna, D.; Drulis, H.; Jurczyk, M. Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M = Mn, Al). J. Alloys Compd. 2004, 364, 283–288. [Google Scholar] [CrossRef]
- Falahati, H.; Barz, D.P. Evaluation of hydrogen sorption models for AB5-type metal alloys by employing a gravimetric technique. Int. J. Hydrog. Energy 2013, 38, 8838–8851. [Google Scholar] [CrossRef]
- Palewski, T.; Tristan, N.V.; Drulis, H.; Ćwik, J. Hydrogenation process of the Gd3M (M = Ni or Co) intermetallics compound. J. Alloys Compd. 2005, 404-406, 584–587. [Google Scholar] [CrossRef]
- Bhuyan, R.K.; Mohapatra, R.K.; Nath, G.; Sahoo, B.K.; Das, D.; Pamu, D. Influence of high-energy ball milling on structural, microstructural, and optical properties of Mg2TiO4 nanoparticles. J. Mater. Sci. Mater. Electron. 2019, 31, 628–636. [Google Scholar] [CrossRef]
- Xie, X.B.; Hou, C.; Chen, C.; Sun, X.; Pang, Y.; Zhang, Y.; Yu, R.; Wang, B.; Du, W. First-principles studies in Mg-based hydrogen storage Materials: A review. Energy 2020, 211, 118959. [Google Scholar] [CrossRef]
- Luo, Q.; Li, J.; Li, B.; Liu, B.; Shao, H.; Li, Q. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism. J. Magnes. Alloy. 2019, 7, 58–71. [Google Scholar] [CrossRef]
- Jurczyk, M.; Smardz, L.; Okonska, I.; Jankowska, E.; Nowak, M.; Smardz, K. Nanoscale Mg-based materials for hydrogen storage. Int. J. Hydrog. Energy 2008, 33, 374–380. [Google Scholar] [CrossRef]
- Khan, D.; Panda, S.; Ma, Z.; Ding, W.; Zou, J. Formation and hydrogen storage behavior of nanostructured Mg2FeH6 in a compressed 2MgH2–Fe composite. Int. J. Hydrog. Energy 2020, 45, 21676–21686. [Google Scholar] [CrossRef]
- Antiqueira, F.J.; Leiva, D.R.; Zepon, G.; de Cunha, B.F.; Figueroa, S.J.; Botta, W.J. Fast hydrogen absorption/desorption kinetics in reactive milled Mg-8 mol% Fe nanocomposites. Int. J. Hydrog. Energy 2020, 45, 12408–12418. [Google Scholar] [CrossRef]
- Liu, B.H.; Kim, D.M.; Lee, K.Y.; Lee, J.Y. Hydrogen storage properties of TiMn2-based alloys. J. Alloys Compd. 1996, 240, 214–218. [Google Scholar] [CrossRef]
- Hosni, B.; Khaldi, C.; ElKedim, O.; Fenineche, N.; Lamloumi, J. Electrochemical properties of Ti2Ni hydrogen storage alloy. Int. J. Hydrog. Energy 2017, 42, 1420–1428. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.Y.; Milovzorov, G.S.; Klyamkin, S.N.; Zadorozhnyy, M.Y.; Strugova, D.V.; Gorshenkov, M.V.; Kaloshkin, S.D. Preparation and hydrogen storage properties of nanocrystalline TiFe synthesized by mechanical alloying. Prog. Nat. Sci. Mater. Int. 2017, 27, 149–155. [Google Scholar] [CrossRef]
- Reilly, J.J.; Wiswall, R.H. Formation and properties of iron titanium hydride. Inorg. Chem. 1974, 13, 218–222. [Google Scholar] [CrossRef]
- Sandrock, G.D.; Goodell, P.D. Surface poisoning of LaNi5, FeTi and (Fe, Mn)Ti by O2, Co and H2O. J. Less Common Met. 1980, 73, 161–168. [Google Scholar] [CrossRef]
- Davids, M.W.; Lototskyy, M.; Nechaev, A.; Naidoo, Q.; Williams, M.; Klochko, Y. Surface modification of TiFe hydrogen storage alloy by metal-organic chemical vapour deposition of palladium. Int. J. Hydrog. Energy 2011, 36, 9743–9750. [Google Scholar] [CrossRef]
- Edalati, K.; Matsuda, J.; Iwaoka, H.; Toh, S.; Akiba, E.; Horita, Z. High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. Int. J. Hydrog. Energy 2013, 38, 4622–4627. [Google Scholar] [CrossRef]
- Edalati, K.; Matsuda, J.; Arita, M.; Daio, T.; Akiba, E.; Horita, Z. Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Appl. Phys. Lett. 2013, 103, 143902. [Google Scholar] [CrossRef]
- Edalati, K.; Matsuda, J.; Yanagida, A.; Akiba, E.; Horita, Z. Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: Similarities and differences. Int. J. Hydrog. Energy 2014, 39, 15589–15594. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zechetbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 2006, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Vucht, J.V.; Kuijpers, F.; Bruning, H.C.A.M. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res. Rep. 1970, 25, 133–140. [Google Scholar]
- Huston, E.L.; Sandrock, G.D. Engineering properties of metal hydrides. J. Less Common Met. 1980, 74, 435–443. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, I.S.; Kim, K.J.; Gawlik, K. A hydrogen-compression system using porous metal hydride pellets of LaNi5-xAlx. Int. J. Hydrog. Energy 2008, 33, 870–877. [Google Scholar] [CrossRef]
- Simičić, M.V.; Zdujić, M.; Jelovac, D.M.; Rakin, P.M. Hydrogen storage material based on LaNi5 alloy produced by mechanical alloying. J. Power Sources 2001, 92, 250–254. [Google Scholar] [CrossRef]
- Van Mal, H.H.; Buschow, K.H.; Kuijpers, F.A. Hydrogen absorption and magnetic properties of LaCo5xNi5-5x compounds. J. Less Common Met. 1973, 32, 289–296. [Google Scholar] [CrossRef]
- Sakai, T.; Oguro, K.; Miyamura, H.; Kuriyama, N.; Kato, A.; Ishikawa, H.; Iwakura, C. Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries. J. Less Common Met. 1990, 161, 193–202. [Google Scholar] [CrossRef]
- Kadir, K.; Sakai, T.; Uehara, I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R = La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. J. Alloys Compd. 1997, 257, 115–121. [Google Scholar] [CrossRef]
- Libowitz, G.G.; Hayes, H.F.; Gibb, T.R. The system zirconium-nickel and hydrogen. J. Phys. Chem. 1958, 62, 76–79. [Google Scholar] [CrossRef]
- Hoang, K.; Van De Walle, C.G. Mechanism for the decomposition of lithium borohydride. Int. J. Hydrog. Energy 2012, 37, 5825–5832. [Google Scholar] [CrossRef] [Green Version]
- Lal, C.; Jain, I.P. Effect of ball milling on structural and hydrogen storage properties of Mg-x wt% FeTi(x = 2 & 5) solid solutions. Int. J. Hydrog. Energy 2012, 37, 3761–3766. [Google Scholar] [CrossRef]
- Tessier, P.; Schulz, R.; Ström-Olsen, J.O. Elastic stress in composite FeTi hydrogen storage materials. J. Mater. Res. 1998, 13, 1538–1547. [Google Scholar] [CrossRef]
- Aymard, L.; Lenain, C.; Courvoisier, L.; Salver-Disma, F.; Tarascon, J. Effect of Carbon Additives on the Electrochemical Properties of AB 5 Graphite Composite Electrodes Prepared by Mechanical Milling. J. Electrochem. Soc. 1999, 146, 2015. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Wu, Y.; Guo, X.; Ye, J.; Yuan, B.; Wang, S.; Jiang, L. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials. RSC Adv. 2019, 9, 408–428. [Google Scholar] [CrossRef] [Green Version]
- Yartys, V.A.; Lototskyy, M.V.; Akiba, E.; Albert, R.; Antonov, V.E.; Ares, J.R.; Baricco, M.; Bourgeois, N.; Buckley, C.E.; Bellosta von Colbe, J.M.; et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrog. Energy 2019, 44, 7809–7859. [Google Scholar] [CrossRef]
- Baran, A.; Materials, M.P. Magnesium-based materials for hydrogen storage—A scope review. Materials 2020, 13, 3993. [Google Scholar] [CrossRef]
- Ivanov, E.; Konstanchuk, I.; Stepanov, A.; Boldyrev, V. Magnesium mechanical alloys for hydrogen storage. J. Less Common Met. 1987, 131, 25–29. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, A.K.; Srivastava, O.N. On the synthesis of the Mg2Ni alloy by mechanical alloying. J. Alloys Compd. 1995, 227, 63–68. [Google Scholar] [CrossRef]
- Zaluski, L.; Zaluska, A.; Ström-Olsen, J.O. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J. Alloys Compd. 1995, 217, 245–249. [Google Scholar] [CrossRef]
- Orimo, S.; Fujii, H. Materials science of Mg-Ni-based new hydrides. Appl. Phys. A 2001, 72, 167–186. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrog. Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Cui, N.; He, P.; Luo, J.L. Magnesium-based hydrogen storage materials modified by mechanical alloying. Acta Mater. 1999, 47, 3737–3743. [Google Scholar] [CrossRef]
- Liang, G.; Boily, S.; Huot, J.; Van Neste, A.; Schulz, R. Mechanical alloying and hydrogen absorption properties of the Mg–Ni system. J. Alloys Compd. 1998, 267, 302–306. [Google Scholar] [CrossRef]
- Huang, L.W.; Elkedim, O.; Moutarlier, V. Synthesis and characterization of nanocrystalline Mg2Ni prepared by mechanical alloying: Effects of substitution of Mn for Ni. J. Alloys Compd. 2010, 504, S311–S314. [Google Scholar] [CrossRef]
- Huang, L.W.; Elkedim, O.; Hamzaoui, R. First principles investigation of the substitutional doping of Mn in Mg2Ni phase and the electronic structure of Mg3MnNi2 phase. J. Alloys Compd. 2011, 509, S328–S333. [Google Scholar] [CrossRef]
- Du, Q.; Li, S.; Huang, G.; Feng, Q. Enhanced electrochemical kinetics of magnesium-based hydrogen storage alloy by mechanical milling with graphite. Int. J. Hydrog. Energy 2017, 42, 21871–21879. [Google Scholar] [CrossRef]
- Gkanas, E.I.; Damian, A.; Ioannidou, A.; Stoian, G.; Lupu, N.; Gjoka, M.; Makridis, S.S. Synthesis, characterisation and hydrogen sorption properties of mechanically alloyed Mg(Ni1-xMnx)2. Mater. Today Energy 2019, 13, 186–194. [Google Scholar] [CrossRef]
- Ruggeri, S.; Lenain, C.; Roué, L.; Alamdari, H.; Liang, G.X.; Huot, J.; Schulz, R. Optimization of the Ball-Milling Parameters for the Synthesis of Amorphous MgNi Alloy Used as Negative Electrode in Ni-MH Batteries. Mater. Sci. Forum 2001, 377, 63–70. [Google Scholar] [CrossRef]
- Liu, W.; Lei, Y.; Sun, D.; Wu, J.; Wang, Q. A study of the degradation of the electrochemical capacity of amorphous Mg50Ni50 alloy. J. Power Sources 1996, 58, 243–247. [Google Scholar] [CrossRef]
- Goo, N.H.; Woo, J.H.; Lee, K.S. Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage alloy electrode synthesized by mechanical alloying and the effect of mechanically coating with nickel. J. Alloys Compd. 1999, 288, 286–293. [Google Scholar] [CrossRef]
- Lenain, C.; Aymard, L.; Electrochemistry, J.T.J.S.S. Electrochemical properties of Mg2Ni and Mg2Ni2 prepared by mechanical alloying. Electrochemistry 1998, 2, 285–290. [Google Scholar]
- Abe, T.; Tachikawa, T.; Hatano, Y.; Watanabe, K. Electrochemical behavior of amorphous MgNi as negative electrodes in rechargeable Ni–MH batteries. J. Alloys Compd. 2002, 330-332, 792–795. [Google Scholar] [CrossRef]
- Anik, M. Electrochemical hydrogen storage capacities of Mg2Ni and MgNi alloys synthesized by mechanical alloying. J. Alloys Compd. 2010, 491, 565–570. [Google Scholar] [CrossRef]
- Iwakura, C.; Shin-ya, R.; Miyanohara, K.; Nohara, S.; Inoue, H. Effects of Ti–V substitution on electrochemical and structural characteristics of MgNi alloy prepared by mechanical alloying. Electrochim. Acta 2001, 46, 2781–2786. [Google Scholar] [CrossRef]
- Ruggeri, S.; Roué, L.; Huot, J.; Schulz, R.; Aymard, L.; Tarascon, J.M. Properties of mechanically alloyed Mg–Ni–Ti ternary hydrogen storage alloys for Ni-MH batteries. J. Power Sources 2002, 112, 547–556. [Google Scholar] [CrossRef]
- Jiang, J.J.; Gasik, M. An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys. J. Power Sources 2000, 89, 117–124. [Google Scholar] [CrossRef]
- Elkedim, O.; Huang, L.; Bassir, D. Advanced study of hydrogen storage by substitutional doping of Mn and Ti in Mg2Ni phase. Int. J. Simul. Multidiscip. Des. Optim. 2014, 5, A24. [Google Scholar] [CrossRef] [Green Version]
- Amirkhiz, B.S.; Danaie, M.; Mitlin, D. The influence of SWCNT–metallic nanoparticle mixtures on the desorption properties of milled MgH2 powders. Nanotechnology 2009, 20, 204016. [Google Scholar] [CrossRef]
- Yao, X.; Wu, C.; Du, A.; Lu, G.Q.; Cheng, H.; Smith, S.C.; Zou, J. Mg-Based Nanocomposites with High Capacity and Fast Kinetics for Hydrogen Storage. J. Phys. Chem. B 2006, 110, 11697–11703. [Google Scholar] [CrossRef]
- Huang, L.W.; Elkedim, O.; Nowak, M.; Jurczyk, M.; Chassagnon, R.; Meng, D.W. Synergistic effects of multiwalled carbon nanotubes and Al on the electrochemical hydrogen storage properties of Mg2Ni-type alloy prepared by mechanical alloying. Int. J. Hydrog. Energy 2012, 37, 1538–1545. [Google Scholar] [CrossRef]
- Guo, J.; Yang, K.; Xu, L.; Liu, Y.; Zhou, K. Hydrogen storage properties of Mg76Ti12Fe12-xNix(x = 0,4,8,12) alloys by mechanical alloying. Int. J. Hydrog. Energy 2007, 32, 2412–2416. [Google Scholar] [CrossRef]
- Gao, X.P.; Wang, Y.; Lu, Z.W.; Hu, W.K.; Wu, F.; Song, D.Y.; Shen, P.W. Preparation and Electrochemical Hydrogen Storage of the Nanocrystalline LaMg12 Alloy with Ni Powders. Chem. Mater. 2004, 16, 2515–2517. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Zhang, P.; Zhu, Y.; Hou, Z.; Shang, H. An Investigation on Hydrogen Storage Kinetics of the Nanocrystalline and Amorphous LaMg12-type Alloys Synthesized by Mechanical Milling. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2018, 33, 278–287. [Google Scholar] [CrossRef]
- Li, X.; Zhao, D.; Zhang, Y.; Xu, J.; Zhang, G.; Zhang, Y. Hydrogen storage properties of mechanically milled La2Mg17-x wt.(x = 0, 50, 100, 150 and 200) composites. J. Rare Earths 2013, 31, 694–700. [Google Scholar] [CrossRef]
- Song, M.Y. Improvement in hydrogen storage characteristics of magnesium by mechanical alloying with nickel. J. Mater. Sci. 1995, 30, 1343–1351. [Google Scholar] [CrossRef]
- Lotoskyy, M.; Denys, R.; Yartys, V.A.; Eriksen, J.; Goh, J.; Nyamsi, S.N.; Sita, C.; Cummings, F. An outstanding effect of graphite in nano-MgH2–TiH2 on hydrogen storage performance. J. Mater. Chem. A 2018, 6, 10740–10754. [Google Scholar] [CrossRef]
- Zhou, C.; Fang, Z.Z.; Robert, C. Bowman, J. Stability of Catalyzed Magnesium Hydride Nanocrystalline During Hydrogen Cycling. Part I: Kinetic Analysis. J. Phys. Chem. C 2015, 119, 22261–22271. [Google Scholar] [CrossRef]
- Rizo-Acosta, P.; Cuevas, F.; Latroche, M. Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium. J. Mater. Chem. A 2019, 7, 23064–23075. [Google Scholar] [CrossRef]
- Chiang, C.H.; Chin, Z.H.; Perng, T.P. Hydrogenation of TiFe by high-energy ball milling. J. Alloys Compd. 2000, 307, 259–265. [Google Scholar] [CrossRef]
- Emami, H.; Edalati, K.; Matsuda, J.; Akiba, E.; Horita, Z. Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater. 2015, 88, 190–195. [Google Scholar] [CrossRef]
- Zaluski, L.; Zaluska, A.; Ström-Olsen, J.O. Nanocrystalline metal hydrides. J. Alloys Compd. 1997, 253–254, 70–79. [Google Scholar] [CrossRef]
- Zadorozhnyi, V.Y.; Skakov, Y.A.; Milovzorov, G.S. Appearance of metastable states in Fe-Ti and Ni-Ti systems in the process of mechanochemical synthesis. Met. Sci. Heat Treat. 2008, 50, 404–410. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.; Klyamkin, S.; Zadorozhnyy, M.; Bermesheva, O.; Kaloshkin, S. Hydrogen storage nanocrystalline TiFe intermetallic compound: Synthesis by mechanical alloying and compacting. Int. J. Hydrog. Energy 2012, 37, 17131–17136. [Google Scholar] [CrossRef]
- Inui, H.; Yamamoto, T.; Hirota, M.; Yamaguchi, M. Lattice defects introduced during hydrogen absorption–desorption cycles and their effects on P–C characteristics in some intermetallic compounds. J. Alloys Compd. 2002, 330–332, 117–124. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.Y.; Klyamkin, S.N.; Zadorozhnyy, M.Y.; Gorshenkov, M.V.; Kaloshkin, S.D. Mechanical alloying of nanocrystalline intermetallic compound TiFe doped with sulfur and magnesium. J. Alloys Compd. 2014, 615, S569–S572. [Google Scholar] [CrossRef]
- Berdonosova, E.A.; Zadorozhnyy, V.Y.; Zadorozhnyy, M.Y.; Geodakian, K.V.; Zheleznyi, M.V.; Tsarkov, A.A.; Kaloshkin, S.D.; Klyamkin, S.N. Hydrogen storage properties of TiFe-based ternary mechanical alloys with cobalt and niobium. A thermochemical approach. Int. J. Hydrog. Energy 2019, 44, 29159–29165. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.Y.; Klyamkin, S.N.; Zadorozhnyy, M.Y.; Bermesheva, O.V.; Kaloshkin, S.D. Mechanical alloying of nanocrystalline intermetallic compound TiFe doped by aluminum and chromium. J. Alloys Compd. 2014, 586, S56–S60. [Google Scholar] [CrossRef]
- Liang, L.; Wang, F.; Rong, M.; Wang, Z.; Yang, S.; Wang, J.; Zhou, H.; Liang, L.; Wang, F.; Rong, M.; et al. Recent Advances on Preparation Method of Ti-Based Hydrogen Storage Alloy. J. Mater. Sci. Chem. Eng. 2020, 8, 18–38. [Google Scholar] [CrossRef]
- Sujan, G.K.; Pan, Z.; Li, H.; Liang, D.; Alam, N. An overview on TiFe intermetallic for solid-state hydrogen storage: Microstructure, hydrogenation and fabrication processes. Crit. Rev. Solid State Mater. Sci. 2019, 45, 410–427. [Google Scholar] [CrossRef]
- Falcão, R.B.; Dammann, E.D.; Rocha, C.J.; Durazzo, M.; Ichikawa, R.U.; Martinez, L.G.; Botta, W.J.; Leal Neto, R.M. An alternative route to produce easily activated nanocrystalline TiFe powder. Int. J. Hydrog. Energy 2018, 43, 16107–16116. [Google Scholar] [CrossRef]
- Nobuki, T.; Crivello, J.C.; Cuevas, F.; Joubert, J.M. Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties. Int. J. Hydrog. Energy 2019, 44, 10770–10776. [Google Scholar] [CrossRef]
- Zhang, Z.; Elkedim, O.; Balcerzak, M.; Jurczyk, M. Structural and electrochemical hydrogen storage properties of MgTiNix(x = 0.1, 0.5, 1, 2) alloys prepared by ball milling. Int. J. Hydrog. Energy 2016, 41, 11761–11766. [Google Scholar] [CrossRef]
- Zhang, Z.; Elkedim, O.; Ma, Y.Z.; Balcerzak, M.; Jurczyk, M. The phase transformation and electrochemical properties of TiNi alloys with Cu substitution: Experiments and first-principle calculations. Int. J. Hydrog. Energy 2017, 42, 1444–1450. [Google Scholar] [CrossRef]
- Zhang, Z.; Elkedim, O.; Balcerzak, M.; Jurczyk, M.; Chassagnon, R. Effect of Ni content on the structure and hydrogenation property of mechanically alloyed TiMgNix ternary alloys. Int. J. Hydrog. Energy 2017, 42, 23751–23758. [Google Scholar] [CrossRef]
- Zhang, Z.; Elkedim, O.; Zhang, M.; Bassir, D. Systematic investigation of mechanically alloyed Ti-Mg-Ni used as negative electrode in Ni-MH battery. J. Solid State Electrochem. 2017, 22, 1669–1676. [Google Scholar] [CrossRef]
- Li, X.D.; Elkedim, O.; Cuevas, F.; Chassagnon, R. Structural and hydrogenation study on the ball milled TiH2–Mg–Ni. Int. J. Hydrog. Energy 2015, 40, 4212–4218. [Google Scholar] [CrossRef]
- Li, X.D.; Elkedim, O.; Nowak, M.; Jurczyk, M. Characterization and first principle study of ball milled Ti–Ni with Mg doping as hydrogen storage alloy. Int. J. Hydrog. Energy 2014, 39, 9735–9743. [Google Scholar] [CrossRef]
- Hosni, B.; Li, X.; Khaldi, C.; Elkedim, O.; Lamloumi, J. Structure and electrochemical hydrogen storage properties of Ti2Ni alloy synthesized by ball milling. J. Alloys Compd. 2014, 615, 119–125. [Google Scholar] [CrossRef]
- Li, X.D.; Elkedim, O.; Nowak, M.; Jurczyk, M.; Chassagnon, R. Structural characterization and electrochemical hydrogen storage properties of Ti2−xZrxNi(x = 0, 0.1, 0.2) alloys prepared by mechanical alloying. Int. J. Hydrog. Energy 2013, 38, 12126–12132. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, Y.; Sun, L.; Qiu, S.; Qi, Y.; Xu, F.; Yuan, H. Structure and electrochemical properties of composite electrodes synthesized by mechanical milling Ni-free TiMn2-based alloy with La-based alloys. J. Alloys Compd. 2007, 446-447, 614–619. [Google Scholar] [CrossRef]
- Choi, M.J.; Hong, H.S.; Lee, K.S. Electrochemical characteristics of the composite metal hydride of TiFe and TiMn2 synthesized by mechanical alloying. J. Alloys Compd. 2003, 358, 306–311. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Schulz, R. Hydrogen storage properties of the mechanically alloyed LaNi5-based materials. J. Alloys Compd. 2001, 320, 133–139. [Google Scholar] [CrossRef]
- Lototsky, M.V.; Williams, M.; Yartys, V.A.; Klochko, Y.V.; Linkov, V.M. Surface-modified advanced hydrogen storage alloys for hydrogen separation and purification. J. Alloys Compd. 2011, 509, S555–S561. [Google Scholar] [CrossRef]
- Bratanich, T.I.; Skorokhod, V.V. Reversible Hydriding of LaNi5-xAlx—Pd Composites in the Presence of Carbon Monoxide. Powder Metall. Met. Ceram. 2000, 39, 575–583. [Google Scholar] [CrossRef]
- Modibane, K.D.; Lototskyy, M.; Davids, M.W.; Williams, M.; Hato, M.J.; Molapo, K.M. Influence of co-milling with palladium black on hydrogen sorption performance and poisoning tolerance of surface modified AB5-type hydrogen storage alloy. J. Alloys Compd. 2018, 750, 523–529. [Google Scholar] [CrossRef]
- Kadir, K.; Sakai, T.; Uehara, I. Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure. J. Alloys Compd. 2000, 302, 112–117. [Google Scholar] [CrossRef]
- Liu, W.; Webb, C.J.; Gray, E.M.A. Review of hydrogen storage in AB3 alloys targeting stationary fuel cell applications. Int. J. Hydrog. Energy 2016, 41, 3485–3507. [Google Scholar] [CrossRef]
- Belgacem, Y.B.; Khaldi, C.; Lamloumi, J. The effect of the discharge rate on the electrochemical properties of AB3-type hydrogen storage alloy as anode in nickel–metal hydride batteries. Int. J. Hydrog. Energy 2017, 42, 12797–12807. [Google Scholar] [CrossRef]
- Fang, F.; Chen, Z.; Wu, D.; Liu, H.; Dong, C.; Song, Y.; Sun, D. Subunit volume control mechanism for dehydrogenation performance of AB3-type superlattice intermetallics. J. Power Sources 2019, 427, 145–153. [Google Scholar] [CrossRef]
- Jaafar, H.; Aymard, L.; Dachraoui, W.; Demortière, A.; Abdellaoui, M. Preparation and characterization of mechanically alloyed AB3-type based material LaMg2Ni5Al4 and its solid-gaz hydrogen storage reaction. J. Solid State Chem. 2018, 260, 73–79. [Google Scholar] [CrossRef]
- Elghali, M.; Abdellaoui, M.; Paul-Boncour, V.; Latroche, M. Synthesis and structural characterization of mechanically alloyed AB3-type based material: LaZr2Mn4Ni5. Intermetallics 2013, 41, 76–81. [Google Scholar] [CrossRef]
- Ayari, M.; Ghodbane, O.; Abdellaoui, M. Elaboration and electrochemical characterization of LaTi2Cr4Ni5 -based metal hydride alloys. Int. J. Hydrog. Energy 2015, 40, 10934–10942. [Google Scholar] [CrossRef]
- Sahli, I.; Ghodbane, O.; Abdellaoui, M. Elaboration and electrochemical characterization of LaZr2Cr4Ni5 -based metal hydride alloys. Ionics 2016, 22, 1973–1983. [Google Scholar] [CrossRef]
- Ayari, M.; Ghodbane, O.; Abdellaoui, M. Electrochemical study of the reversible hydrogen storage in CeTi2Cr4Ni5-based metal hydride alloys. Int. J. Hydrog. Energy 2016, 41, 18582–18591. [Google Scholar] [CrossRef]
- Kadir, K.; Kuriyama, N.; Sakai, T.; Uehara, I.; Eriksson, L. Structural investigation and hydrogen capacity of CaMg2Ni9: A new phase in the AB2C9 system isostructural with LaMg2Ni9. J. Alloys Compd. 1999, 284, 145–154. [Google Scholar] [CrossRef]
- Miraglia, S.; Girard, G.; Fruchart, D.; Liang, G.; Huot, J.; Schulz, R. Structural characterization and some hydrogen absorption properties of (MgxCa1−x)Ni2.6: A new phase in the Mg–Ca–Ni system. J. Alloys Compd. 2009, 478, L33–L36. [Google Scholar] [CrossRef]
- Chebab, S.; Abdellaoui, M.; Latroche, M.; Paul-Boncour, V. Structural and hydrogen storage properties of LaCaMgNi9-type alloy obtained by mechanical alloying. Mater. Renew. Sustain. Energy 2015, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Akiba, E.; Hayakawa, H.; Kohno, T. Crystal structures of novel La–Mg–Ni hydrogen absorbing alloys. J. Alloys Compd. 2006, 408-412, 280–283. [Google Scholar] [CrossRef]
- Szajek, A.; Jurczyk, M.; Rajewski, W. The electronic and electrochemical properties of the LaNi5, LaNi4Al and LaNi3AlCo systems. J. Alloys Compd. 2000, 307, 290–296. [Google Scholar] [CrossRef]
- Balcerzak, M.; Nowak, M.; Jurczyk, M. Hydrogenation and electrochemical studies of La–Mg–Ni alloys. Int. J. Hydrog. Energy 2017, 42, 1436–1443. [Google Scholar] [CrossRef]
- Balcerzak, M.; Nowak, M.; Jurczyk, M. The Influence of Pr and Nd Substitution on Hydrogen Storage Properties of Mechanically Alloyed (La, Mg)2Ni7-Type Alloys. J. Mater. Eng. Perform. 2018, 27, 6166–6174. [Google Scholar] [CrossRef] [Green Version]
- Dymek, M.; Nowak, M.; Jurczyk, M.; Bala, H. Electrochemical characterization of nanocrystalline hydrogen storage La1.5Mg0.5Ni6.5Co0.5 alloy covered with amorphous nickel. J. Alloys Compd. 2019, 780, 697–704. [Google Scholar] [CrossRef]
- Nowak, M.; Balcerzak, M.; Jurczyk, M. Effect of Substitutional Elements on the Thermodynamic and Electrochemical Properties of Mechanically Alloyed La1.5Mg0.5Ni7−xMx alloys (M = Al, Mn). Metals 2020, 10, 578. [Google Scholar] [CrossRef]
- Hu, Y.Q.; Zhang, H.F.; Yan, C.; Ye, L.; Ding, B.Z.; Hu, Z.Q. Preparation and hydrogenation of body-centered-cubic TiCr2 alloy. Mater. Lett. 2004, 58, 783–786. [Google Scholar] [CrossRef] [Green Version]
- Takeichi, N.; Takeshita, H.T.; Oishi, T.; Kaneko, T.; Tanaka, H.; Kiyobayashi, T.; Kuriyama, N. Hydrogenation of Body-Centered-Cubic Titanium-Chromium Alloys Prepared by Mechanical Grinding. Mater. Trans. 2002, 43, 2161–2164. [Google Scholar] [CrossRef] [Green Version]
- Balcerzak, M. Hydrogenation properties of nanocrystalline TiVMn body-centered-cubic alloys. Int. J. Hydrog. Energy 2020, 45, 15521–15529. [Google Scholar] [CrossRef]
- Lototsky, M.V.; Yartys, V.A.; Zavaliy, I.Y. Vanadium-based BCC alloys: Phase-structural characteristics and hydrogen sorption properties. J. Alloys Compd. 2005, 404–406, 421–426. [Google Scholar] [CrossRef]
- Balcerzak, M. Effect of Ni on electrochemical and hydrogen storage properties of V-rich body-centered-cubic solid solution alloys. Int. J. Hydrog. Energy 2018, 43, 8395–8403. [Google Scholar] [CrossRef]
- Balcerzak, M. Structural, Electrochemical and Hydrogen Sorption Studies of Nanocrystalline Ti-V-Co and Ti-V-Ni-Co Alloys Synthesized by Mechanical Alloying Method. J. Mater. Eng. Perform. 2019, 28, 4838–4844. [Google Scholar] [CrossRef] [Green Version]
- Kondo, T.; Sakurai, Y. Hydrogen absorption–desorption properties of Mg–Ca–V BCC alloy prepared by mechanical alloying. J. Alloys Compd. 2006, 417, 164–168. [Google Scholar] [CrossRef]
- Shao, H.; Asano, K.; Enoki, H.; Akiba, E. Correlation study between hydrogen absorption property and lattice structure of Mg-based BCC alloys. Int. J. Hydrog. Energy 2009, 34, 2312–2318. [Google Scholar] [CrossRef]
- Djellouli, A.; Benyelloul, K.; Aourag, H.; Bekhechi, S.; Adjadj, A.; Bouhadda, Y.; ElKedim, O. A datamining approach to classify, select and predict the formation enthalpy for intermetallic compound hydrides. Int. J. Hydrog. Energy 2018, 43, 19111–19120. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Ding, X.; Liu, D.; Zhang, Q.; Si, T. Microstructure characterization and hydrogen storage properties study of Mg2Ni0.92M0.08 (M = Ti, V, Fe or Si) alloys. Prog. Nat. Sci. Mater. Int. 2018, 28, 464–469. [Google Scholar] [CrossRef]
- Hapçı Ağaoğlu, G.; Orhan, G. Elaboration and electrochemical characterization of Mg–Ni hydrogen storage alloy electrodes for Ni/MH batteries. Int. J. Hydrog. Energy 2017, 42, 8098–8108. [Google Scholar] [CrossRef]
- Kumar, S.; Miyaoka, H.; Ichikawa, T.; Dey, G.K.; Kojima, Y. Micro-alloyed Mg2Ni for better performance as negative electrode of Ni-MH battery and hydrogen storage. Int. J. Hydrog. Energy 2017, 42, 5220–5226. [Google Scholar] [CrossRef]
- Nobuki, T.; Okuzumi, Y.; Hatate, M.; Crivello, J.C.; Cuevas, F.; Joubert, J.M. Mechanosynthesis and Reversible Hydrogen Storage of Mg2Ni and Mg2Cu Alloys. Mater. Trans. 2019, 60, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zou, J.; Huang, S.; He, G.; Zhao, N.; Zeng, X.; Ding, W. Hydrogen storage in Mg2 Ni(Fe)H4 nano particles synthesized from coarse-grained Mg and nano sized Ni(Fe) precursor. RSC Adv. 2018, 8, 18959–18965. [Google Scholar] [CrossRef] [Green Version]
- Grigorova, E.; Tzvetkov, P.; Todorova, S.; Markov, P.; Spassov, T. Facilitated Synthesis of Mg2Ni Based Composites with Attractive Hydrogen Sorption Properties. Materials 2021, 14, 1936. [Google Scholar] [CrossRef] [PubMed]
- Si, T.; Ma, Y.; Li, Y.; Liu, D. Solid solution of Cu in Mg2NiH4 and its destabilized effect on hydrogen desorption. Mater. Chem. Phys. 2017, 193, 1–6. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Z.; Zhu, Y.; Fei, J.; Song, Y.; Zhang, Y.; Zhang, J.; Liu, Y.; Chen, Q.; Li, L. Electrochemical hydrogen storage performance of Mg3GeNi2 alloy. Intermetallics 2020, 127, 106961. [Google Scholar] [CrossRef]
- Abrashev, B.; Spassov, T.; Pandev, M.; Vassilev, S.; Popov, A. Hydrogen sorption and electrochemical properties of Ti-Fe based alloys synthesized by mechanical alloying. Bulg. Chem. Commun. 2017, 49, 247–253. [Google Scholar]
- Zadorozhnyy, V.; Berdonosova, E.; Gammer, C.; Eckert, J.; Zadorozhnyy, M.; Bazlov, A.; Zheleznyi, M.; Kaloshkin, S.; Klyamkin, S. Mechanochemical synthesis and hydrogenation behavior of (TiFe)100-xNix alloys. J. Alloys Compd. 2019, 796, 42–46. [Google Scholar] [CrossRef]
- Nobuki, T.; Moriya, T.; Hatate, M.; Crivello, J.C.; Cuevas, F.; Joubert, J.M. Synthesis of tife hydrogen absorbing alloys prepared by mechanical alloying and SPS treatment. Metals 2018, 8, 264. [Google Scholar] [CrossRef] [Green Version]
- Manna, J.; Tougas, B.; Huot, J. Mechanical activation of air exposed TiFe + 4 wthydrogenation by cold rolling and ball milling. Int. J. Hydrog. Energy 2018, 43, 20795–20800. [Google Scholar] [CrossRef]
- Shang, H.; Zhang, Y.; Li, Y.; Qi, Y.; Guo, S.; Zhao, D. Investigation on gaseous and electrochemical hydrogen storage performances of as-cast and milled Ti1.1Fe0.9Ni0.1 and Ti1.09Mg0.01Fe0.9Ni0.1 alloys. Int. J. Hydrog. Energy 2018, 43, 1691–1701. [Google Scholar] [CrossRef]
- Romero, G.; Lv, P.; Huot, J. Effect of ball milling on the first hydrogenation of TiFe alloy doped with 4 wt% (Zr + 2Mn) additive. J. Mater. Sci. 2018, 53, 13751–13757. [Google Scholar] [CrossRef]
- Gkanas, E.I.; Khzouz, M.; Donac, A.; Ioannidou, A.; Stoian, G.; Lupu, N.; Gjoka, M.; Makridis, S.S. Synthesis and Hydrogen Sorption Characteristics of Mechanically Alloyed Mg(NixMn1-x)2 Intermetallics. arXiv 2017, arXiv:1702.04807. [Google Scholar]
- Wang, Z.M.; Zhou, H.Y.; Gu, Z.F.; Cheng, G.; Yu, A.B. Preparation of LaMgNi4 alloy and its electrode properties. J. Alloys Compd. 2004, 377, L7–L9. [Google Scholar] [CrossRef]
- Humana, R.M.; Ruiz, F.C.; Thomas, J.E.; Peretti, H.A.; Castro, E.B.; Visintin, A. Properties of composites of metal hydride alloys synthesized by mechanical milling. J. Solid State Electrochem. 2016, 21, 153–160. [Google Scholar] [CrossRef]
- M, E.; M, A. Structural and Hydriding Properties of the LaZr2Mn4Ni5-AB3 Type Based Alloy Prepared by Mechanical Alloying from the LaNi5 and ZrMn2 Binary Compounds. J. Mater. Sci. Eng. 2016, 05. [Google Scholar] [CrossRef]
- Jaafar, H.; Dhiab, A.; Slama, C.; Sahli, I.; Abdellaoui, M. Synthesis of quaternary nano-intermetallic LaTi2Ni5Al4 with its hydrogen encapsulation and inspection using lithium-hydride cell. Micro Nano Lett. 2020, 15, 201–205. [Google Scholar] [CrossRef]
- Chebab, S.; Abdellaoui, M.; Latroche, M.; Paul-Boncour, V. Electrochemical characterization of mechanically alloyed LaCaMgNi9 compound. Mater. Renew. Sustain. Energy 2016, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ayari, M.; Sahli, I.; Elghali, M.; Ghodbane, O.; Jaafar, H.; Abdellaoui, M. Synthesis and characterizations of structural and electrochemical properties of CeTi2Ni4.5Al0.2Mn0.3Cr4 AB3 type compound. J. Alloys Compd. 2021, 884, 161017. [Google Scholar] [CrossRef]
- Nowak, M.; Balcerzak, M.; Jurczyk, M. Hydrogen storage and electrochemical properties of mechanically alloyed La1.5-xGdxMg0.5Ni7 (0 ≤ x ≤ 1.5). Int. J. Hydrog. Energy 2018, 43, 8897–8906. [Google Scholar] [CrossRef]
- Dymek, M.; Nowak, M.; Jurczyk, M.; Bala, H. Encapsulation of La1.5Mg0.5Ni7 nanocrystalline hydrogen storage alloy with Ni coatings and its electrochemical characterization. J. Alloys Compd. 2018, 749, 534–542. [Google Scholar] [CrossRef]
- Dhaouadi, H.; Ajlani, H.; Zormati, H.; Abdellaoui, M. Elaboration and electrochemical characterization of two hydrogen storage alloy types: LaNi3-xMnxCr2(x = 0, 0.1, and 0.3) and La2Ni7. Ionics 2018, 24, 2017–2027. [Google Scholar] [CrossRef]
- Srivastava, S.; Panwar, K. Investigations on Microstructures of Ball–milled MmNi5 Hydrogen Storage Alloy. Mater. Res. Bull. 2016, 73, 284–289. [Google Scholar] [CrossRef]
- Dabaki, Y.; Khaldi, C.; Fenineche, N.; ElKedim, O.; Tliha, M.; Lamloumi, J. Electrochemical Studies on the Ca-Based Hydrogen Storage Alloy for Different Milling Times. Met. Mater. Int. 2019, 27, 1005–1024. [Google Scholar] [CrossRef]
- -ullah Rather, S.; Ullah Rather, S. Hydrogen uptake of mechanically milled lani 5-mwcnts nanocomposite. Artic. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 6, 2321–9009. [Google Scholar]
- Li, J.; Li, B.; Yu, X.; Zhao, H.; Shao, H. Geometrical effect in Mg-based metastable nano alloys with BCC structure for hydrogen storage. Int. J. Hydrog. Energy 2019, 44, 29291–29296. [Google Scholar] [CrossRef]
- Fujiwara, K.; Uehiro, R.; Edalati, K.; Li, H.W.; Floriano, R.; Akiba, E.; Horita, Z. New MgVCr BCC alloys synthesized by high-pressure torsion and ball milling. Mater. Trans. 2018, 59, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Balcerzak, M.; Wagstaffe, M.; Robles, R.; Pruneda, M.; Noei, H. Effect of Cr on the hydrogen storage and electronic properties of BCC alloys: Experimental and first-principles study. Int. J. Hydrog. Energy 2020, 45, 28996–29008. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, Y.; Zhu, Y.F.; Zhuang, X.Y.; Neng, W.A.N.; Yi, Q.U.; Guo, L.; Wang, M.; Li, Q. Electrochemical performances of Mg45M5Co50 (M = Pd, Zr) ternary hydrogen storage electrodes. Trans. Nonferrous Met. Soc. China 2016, 26, 1388–1395. [Google Scholar] [CrossRef]
- de Araujo-Silva, R.; Neves, A.M.; Vega, L.E.; Triques, M.R.; Leiva, D.R.; Kiminami, C.S.; Ishikawa, T.T.; Jorge Junior, A.M.; Botta, W.J. Synthesis of β-Ti-Nb alloys from elemental powders by high-energy ball milling and their hydrogenation features. Int. J. Hydrog. Energy 2018, 43, 18382–18391. [Google Scholar] [CrossRef]
- Kazemipour, M.; Salimijazi, H.; Arefarjmand, A.; Saidi, A.; Saatchi, A. Electrochemical Hydrogen Storage Capacity of Ti0.9Zr0.1Mn1.2V0.4Cr0.4 Alloy Synthesized by Ball Milling and Annealing. Trans. Indian Inst. Met. 2015, 69, 1327–1333. [Google Scholar] [CrossRef]
Type | Material | Method | Temperature (°C) | Pressure (bar) | Kinetics(min) | Cycling(Cycle/Stability%) | Max of H (wt.%) | Discharge Capacity (mAh*g) | Ref. |
---|---|---|---|---|---|---|---|---|---|
BM | 300 | 12 abs | 4.2 | [127] | |||||
BM 20 h | 20/17 | 380 | [128] | ||||||
and | BM | 325 | 0.8 | 2.75 | [129] | ||||
graphite | BM 40 h | 20/50.8 | 351.1 | [50] | |||||
BM 48 h | 2.8 | [130] | |||||||
BM 4 h | 400 | 29 | 3.9 | [131] | |||||
BM 3 h | 300 | 20 abs 10 des | 2.8 | 400 | [132] | ||||
wet-milling + | 320 | 60 | 3.55 | [133] | |||||
(x = 0–0.15) | BM | ||||||||
BM 80 h | 20/63.8 | 69.9 | [134] | ||||||
BM 40 h | 50/80 | 240 | [135] | ||||||
BM 2 h | 227 (x = 5) | 50 (x = 5) | 1 (x = 5) | [136] | |||||
BM 2 h | 22 | 33 | 1.07 | [18] | |||||
BM 36 h | 30 | 100 | 1.5 | [74] | |||||
BM 3 h | 40 | 25 | 3 abs | 0.75 | [137] | ||||
BM 30 min | 20 | 20 | 60 abs | 0.75 | [138] | ||||
BM 2 h | 35 | 80 | 0.875 H/M (x = Co) | [80] | |||||
(M = Co, Nb) | 0.9H/M (x = Nb) | ||||||||
BM | 22 | 50 | 0.98 | [81] | |||||
BM 1 h | 80 | 40 | 400s des | 10/70 | 0.8 | 80.4 | [139] | ||
BM 15 min | 22 | 4 | 120 abs | 1.05 | [140] | ||||
BM 10–20 h | 300 | 2 | 8 abs(x = 0.1) | 1.3 | [141] | ||||
(x = 0.1,0.25,0.5,0.75,0.9) | 3 des(x = 0.1) | ||||||||
BM 40 h | 9/77.4 | 385 | [142] | ||||||
BM 30 min | 90/44.4 | 225 | [143] | ||||||
BM 5 h | 20 | 10 | 30/99.3 | 1.1 | 300 | [144] | |||
BM 20 h | 4 H/f.u | [145] | |||||||
BM 20 h | 25 | 9.5 | 30 /73.3 | 5 H/f.u | 150 | [146] | |||
BM 5 h | 30 /93 | 140 | [147] | ||||||
16 | 4 abs | 50/65 (x = 0.25) | 1.48 (x = 0.25) | 304 (x = 0.25) | [148] | ||||
() | 50/94.9 (x = 0.5) | ||||||||
BM 48 h | 60/89.3 | 280 | [149] | ||||||
BM 48 h | 30 | 1000 | 2 des | 50/60 | 1.53 (x = 0.5) | 248 | [114] | ||
(x = 0:0.25:1) | |||||||||
BM 10 h | 4 | 30/90 | 300 (x = 0.3) | [150] | |||||
(x = 0,0.1,0.3) | |||||||||
BM 1 h | 78 abs | 0.86 | [99] | ||||||
+1 wt% Pd | |||||||||
BM 1 h | 27 | 70 | 2 abs | 1.5 | [151] | ||||
BM 40 h | 50/ 61 | 96 | [152] | ||||||
BM | 25 | 40 | 1.53 | [153] | |||||
BCC | BM 125 h | 100 | 3.24 | [154] | |||||
BM 100 min | 30 | 60 | 0.9 | [155] | |||||
BM 14 h | 30 | 50/71.43 | 2.9 | 70 | [156] | ||||
BM 120 h | 20/8 | 624 | [157] | ||||||
BM 14 h | 30 | 50/50 | 75 | [123] | |||||
BM 6 h | 300 | 20 | 3.2 | [158] | |||||
BM 10 h | 10/ 24.1 | 409.5 | [159] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chabane, D.; Elkedim, O. Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review. Energies 2021, 14, 5758. https://doi.org/10.3390/en14185758
Liu Y, Chabane D, Elkedim O. Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review. Energies. 2021; 14(18):5758. https://doi.org/10.3390/en14185758
Chicago/Turabian StyleLiu, Yuchen, Djafar Chabane, and Omar Elkedim. 2021. "Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review" Energies 14, no. 18: 5758. https://doi.org/10.3390/en14185758
APA StyleLiu, Y., Chabane, D., & Elkedim, O. (2021). Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review. Energies, 14(18), 5758. https://doi.org/10.3390/en14185758