Application of a New Statistical Model for the Description of Solid Fuel Decomposition in the Analysis of Artemisia apiacea Pyrolysis
Abstract
:1. Introduction
2. Methods and Materials
2.1. The Model Description
2.2. Experiments and Materials
3. Applications of the Developed Model to Artemisia Stem Pyrolysis
3.1. Identification of the Conversion Rate Peak Position
3.2. Determination of the Reaction Mechanism
3.3. Evaluation of the Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demirbas, M.F.; Balat, M.; Balat, H. Potential Contribution of Biomass to the Sustainable Snergy Development. Energy Conv. Manag. 2009, 50, 1746–1760. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-Art Review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Renewable Fuels and Chemicals by Thermal Processing of Biomass. Chem. Eng. J. 2003, 91, 87–102. [Google Scholar] [CrossRef]
- Chen, T.; Ku, X.; Lin, J.; Ström, H. CFD-DEM Simulation of Biomass Pyrolysis in Fluidized-Bed Reactor with a Multistep Kinetic Scheme. Energies 2020, 13, 5358. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B.; Lyczko, N.; Minh, D.P. The Catalytic Effect of Inherent and Adsorbed Metals on the Fast/Flash Pyrolysis of Biomass: A Review. Energy 2019, 170, 326–337. [Google Scholar] [CrossRef] [Green Version]
- Khiari, B.; Jeguirim, M. Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis. Energies 2018, 11, 730. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, Y.; Shao, S.; Xiao, R. An Experimental and Kinetic Modeling Study Including Coke Formation For Catalytic Pyrolysis of Furfural. Combust. Flame 2016, 173, 258–265. [Google Scholar] [CrossRef]
- Burra, K.R.G.; Gupta, A.K. Modeling of Biomass Pyrolysis Kinetics Using Sequential Multi-Step Reaction Model. Fuel 2019, 237, 1057–1067. [Google Scholar] [CrossRef]
- Richter, F.; Atreya, A.; Kotsovinos, P.; Rein, G. The Effect of Chemical Composition on the Charring of Wood Across Scales. Proc. Combust. Inst. 2019, 37, 4053–4061. [Google Scholar] [CrossRef]
- Li, M.; Jiang, L.; He, J.; Sun, J. Kinetic Triplet Determination and Modified Mechanism Function Construction for Thermo-Oxidative Degradation of Waste Polyurethane Foam Using Conventional Methods and Distributed Activation Energy Model Method. Energy 2019, 175, 1–13. [Google Scholar] [CrossRef]
- Wu, Z.; Ma, C.; Jiang, Z.; Luo, Z. Structure Evolution and Gasification Characteristic Analysis on Co-pyrolysis Char from Lignocellulosic Biomass and Two Ranks of Coal: Effect Of Wheat Straw. Fuel 2019, 239, 180–190. [Google Scholar] [CrossRef]
- Han, Z.; Li, J.; Gu, T.; Yan, B.; Chen, G. The Synergistic Effects of Polyvinyl Chloride and Biomass During Combustible Solid Waste Pyrolysis: Experimental Investigation and Modeling. Energy. Conv. Manag. 2020, 222, 113237. [Google Scholar] [CrossRef]
- Noszczyk, T.; Dyjakon, A.; Koziel, J.A. Kinetic Parameters of Nut Shells Pyrolysis. Energies 2021, 14, 682. [Google Scholar] [CrossRef]
- Meng, F.; Zhou, Y.; Liu, J.; Wu, J.; Wang, G.; Li, R.; Zhang, Y. Thermal Decomposition Behaviors and Kinetics of Carrageenan-Poly Vinyl Alcohol Bio-Composite Film. Carbohydr. Polym. 2018, 201, 96–104. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Gai, C.; Zhang, Y.; Chen, W.; Zhang, P.; Dong, Y. Thermogravimetric and Kinetic Analysis of Thermal Decomposition Characteristics of Low-Lipid Microalgae. Bioresour. Technol. 2013, 150, 139–148. [Google Scholar] [CrossRef]
- Criado, J.M. Kinetic Analysis of DTG Data from Master Curves. Thermochim. Acta 1978, 24, 186–189. [Google Scholar] [CrossRef]
- Li, X.; Grace, J.R.; Bi, X.; Campbell, J.S. A New Pyrolysis Model Based on Generalized Extreme Value (GEV) Distributions and its Application to Lignocellulosic Biomass. Fuel 2016, 184, 211–221. [Google Scholar] [CrossRef]
- Gu, T.; Fu, Z.; Berning, T.; Li, X.; Yin, C. A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical Derivation, Experimental Validation, and Application Demonstration. Energy 2021, 225, 120133. [Google Scholar] [CrossRef]
- Kim, G.; Lee, D.; Jeon, C. Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels. Energies 2019, 12, 1008. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Naqvi, S.R.; Bahadar, A. Kinetic Analysis of Botryococcus Braunii Pyrolysis Using Model-Free and Model Fitting methods. Fuel 2018, 214, 369–380. [Google Scholar] [CrossRef]
- Chong, C.T.; Mong, G.R.; Ng, J.; Chong, W.W.F.; Ani, F.N.; Lam, S.S.; Ong, H.C. Pyrolysis characteristics and kinetic studies of Horse Manure Using Thermogravimetric Analysis. Energy. Conv. Manag. 2019, 180, 1260–1267. [Google Scholar] [CrossRef]
- Málek, J. The Kinetic Analysis of Non-Isothermal Data. Thermochim. Acta 1992, 200, 257–269. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Zhao, W.; Yang, S.; Hou, X. Pyrolysis Characteristics and Kinetic Modeling of Artemisia Apiacea by Thermogravimetric Analysis. J. Anal. Calorim. 2018, 131, 1783–1792. [Google Scholar] [CrossRef]
- Mianowski, A.; Baraniec, I. Three-Parametric Equation in Evaluation of Thermal Dissociation of Reference Compound. J. Therm. Anal. Calorim. 2009, 96, 179–187. [Google Scholar] [CrossRef]
- Vo, T.K.; Ly, H.V.; Lee, O.K.; Lee, E.Y.; Kim, C.H.; Seo, J.; Kim, J.; Kim, S. Pyrolysis Characteristics and Kinetics of Microalgal Aurantiochytrium Sp. KRS101. Energy 2017, 118, 369–376. [Google Scholar] [CrossRef]
- Criado, J.M.; Málek, J.; Ortega, A. Applicability of the Master Plots in Kinetic Analysis of Non-Isothermal Data. Thermochim. Acta 1989, 147, 377–385. [Google Scholar] [CrossRef]
- Koga, N. A Review of the Mutual Dependence of Arrhenius Parameters Evaluated by the Thermoanalytical Study of Solid-State Reactions: The Kinetic Compensation Effect. Thermochim. Acta 1994, 244, 1–20. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, N. Kinetic analysis based on the kinetic compensation effect and optimization calculation. Thermochim. Acta 2020, 690, 178686. [Google Scholar] [CrossRef]
Heating Rate (K/min) | 10 | 20 | 30 | 40 | 50 | |
---|---|---|---|---|---|---|
Exp. | 581.8 | 589.5 | 596.2 | 609.3 | 609.9 | |
F1 Pred. | 582.9 | 591.6 | 597.6 | 606.8 | 610.5 | |
F2 Pred. | 573.0 | 581.1 | 587.2 | 596.6 | 599.7 | |
F3 Pred. | 565.9 | 573.5 | 579.6 | 590.1 | 595.3 | |
D3 Pred. | 588.0 | 597.2 | 603.5 | 613.2 | 615.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, T.; Berning, T.; Yin, C. Application of a New Statistical Model for the Description of Solid Fuel Decomposition in the Analysis of Artemisia apiacea Pyrolysis. Energies 2021, 14, 5789. https://doi.org/10.3390/en14185789
Gu T, Berning T, Yin C. Application of a New Statistical Model for the Description of Solid Fuel Decomposition in the Analysis of Artemisia apiacea Pyrolysis. Energies. 2021; 14(18):5789. https://doi.org/10.3390/en14185789
Chicago/Turabian StyleGu, Tianbao, Torsten Berning, and Chungen Yin. 2021. "Application of a New Statistical Model for the Description of Solid Fuel Decomposition in the Analysis of Artemisia apiacea Pyrolysis" Energies 14, no. 18: 5789. https://doi.org/10.3390/en14185789
APA StyleGu, T., Berning, T., & Yin, C. (2021). Application of a New Statistical Model for the Description of Solid Fuel Decomposition in the Analysis of Artemisia apiacea Pyrolysis. Energies, 14(18), 5789. https://doi.org/10.3390/en14185789